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Abstract—Time-of-Flight cameras constitute a smart and fast
technology for 3D perception but lack in measurement precision
and robustness. The authors present a comprehensive approach
for 3D environment mapping based on this technology. Im-
precision of depth measurements are properly handled by
calibration and application of several filters. Robust registration
is performed by a novel extension to the Iterative Closest
Point algorithm. Remaining registration errors are reduced by
global relaxation after loop-closure and surface smoothing. A
laboratory ground truth evaluation is provided as well as 3D
mapping experiments in a larger indoor environment.

I. INTRODUCTION

The mapping task poses a subset of the well-known

simultaneous localization and mapping (SLAM) problems.

Thrun et. al. declare mapping as to be one of the “core

competencies of truly autonomous robots” [19]. The purpose

of SLAM is to locate the robot, targets and obstacles, which

is fundamental for path planning methods. Generating maps

is a so-called “chicken-and-egg” problem. If the location of

the robot is known, mapping is a solvable task. In reverse,

localization is straightforward, if a perfect map is available.

But combining both turns out to be the challenging SLAM

or concurrent mapping and localization problem.

Because of their high measurement range and precision,

laser scanners and stereo camera systems are mostly used

for SLAM so far. But there are some restrictions: Stereo

vision requires the matching of corresponding points from

two images, and laser scanners measure sequentially line by

line. In contrast, ToF cameras can bridge the gap by pro-

viding 2 1

2
D images irrespective of textures or illumination.

Additionally, ToF cameras allow for higher frame rates and

thus enable the consideration of motion. With compact size

and little maintenance requirements, ToF cameras are serious

competitors with laser scanners in the area of 3D mapping.

Anyhow, up to now ToF cameras did not really find

their way into 3D mapping especially due to their complex

error characteristics and noisy measurements. Depending

on external interfering factors (e.g., sunlight) and scene

configurations, i.e., distances, orientations and reflectivities,

the same scene entails large fluctuations in distance measure-

ments from different perspectives.

This paper presents a 3D mapping approach that handles

these problems by calibration and appropriate filtering. It
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Fig. 1. a) Scenario used for mapping. b) 3D point cloud registered with data
taken from a Swissranger SR-3k device (false color code relates distance to
origin of coordinate system).

relies only on ToF camera data. No additional sensory infor-

mation about the sensor’s motion is needed. The approach

shows promising results and highlights essential impacts that

have to be considered in ToF camera mapping. In order to

motivate further investigations in ToF camera based mapping

the underlying data is provided by the authors.

The approach comprises: Depth correction by employing

an improved calibration, filtering of remaining inaccuracies,

registration w.r.t. to a common coordinate system by a novel

extension to the Iterative Closest Point (ICP) algorithm and

map refinement including global relaxation - all combined

yielding an accurate and consistent 3D map.

The remainder of this paper is organized as follows: Sec-

tion II elaborates 3D mapping approaches and applications

related to ToF cameras. Section III describes ToF camera

errors, caused by external interfering factors, and the em-

ployed depth correction method. In Section IV our mapping

approach including 3D pose estimation, error handling and

mapping is presented. Section V illustrates experimental

results, which support our accentuation of employing real-

time capable ToF sensors to pose estimation and mapping

tasks. Finally, section VI concludes with an outlook on future

work.

II. RELATED WORK

Localization and mapping approaches, based on 3D data

acquired during movement, use either multiple 2D laser

range finders facing different orientations, e.g., [17], or a

single continuously rotating laser scanner [3], [20]. Alterna-

tively, low cost 3D scanners can be built as pivot-mounted

2D laser scanners. Approaches based on those devices need

to stop during data acquisition, e.g., [12].

Most mapping applications handle imprecision of inertial

sensors with scan registration. One of the most commonly

used matching algorithms is the ICP approach. Matching

point clouds with only partial overlap is often trapped in local
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minima, especially when the sensor’s apex angle is small,

such as for ToF cameras. As a consequence, the registration

lacks in precision. Ohno et al. applied ICP matching to

ToF camera data in order to estimate the trajectory of a

mobile robot [13]. Registration errors summed up to 15%
in translation and 17% in rotation. Sheh et al. presented an

application of ToF cameras in rescue robotics [16], which

needed assistance through human operators to find a proper

alignment. Prusak et al. presented a joint approach for robot

navigation with collision avoidance, pose estimation and map

building employing a ToF camera combined with a high-

resolution spherical camera. Structure from motion was used

to estimate an initial guess for the ego motion [15]. Applying

the trimmed ICP (TrICP) approach, results were finally

refined. The TrICP approach extends the ICP algorithm by

employing an estimated degree of overlap, which was in the

cited paper available from the initial guess.

Results of above mentioned approaches are difficult to

compare due to different underlying data sets. In contrast

to the availability of Computer Vision benchmarks, stan-

dard data sets for ToF camera based registrations are not

established up to now. The authors provide the data sets

of our experiments in order to motivate benchmarking of

registration methods for the ToF camera technology.

III. DESCRIPTION OF TOF CAMERA ERRORS

The performance of distance measurements with ToF

cameras is limited by a number of errors. Some of them

are inherent in the measurement principle and cannot be

corrected. Remaining other errors are predictable and cor-

rectable by calibration due to their systematic occurrence.

The following explanations relate to them as non-systematic

errors and systematic errors, respectively.

A. NON-SYSTEMATIC ERRORS

There are three significant non-systematic errors. First, a

bad signal-to-noise ratio distorts the measurement and cannot

be suppressed. A solution is either carefully increasing the

exposure time and amplifying the illumination or intelligent

amplitude filtering. Second, due to interreflections in the

scene the remitted near infrared (NIR) signal is a superposi-

tion of NIR light that has traveled different distances. This

so-called multiple ways reflection lets hollows and corners

appear rounded off and occluding shapes with a smooth

transition. Third, light scattering occurs in the lenses of

the ToF camera. Thus, near bright objects may superpose

the measurements from the background objects, which for

that appear closer. The latter two effects are unpredictable

because the topology of the observed scene is unknown a

priori.

B. SYSTEMATIC ERRORS

Furthermore, there are three systematic errors. First, there

is a distance-related error. The measurement principle is

based on the assumption that the emitted light is sinusoidal,

which is only approximately the case. Second, a so-called

amplitude-related error is caused by non-linearities of the

pixel’s electronic components. As a result, the measured

distance varies with object reflectivity. Third, there is a fixed

pattern phase noise. Since the pixels on the sensor chip are

connected in series, the triggering of each pixel depends on

the position on chip. The farther the pixel is located with

respect to a signal generator, the higher is its measurement

offset. These three errors are manageable by calibration. In

[4] and [5] Fuchs et al. described an appropriate calibration

method, which estimates above mentioned errors. It is ap-

plied for the mapping experiments in this paper.

IV. 3D MAPPING

The here presented approach acquires a metric map in

form of a 3D point cloud, whereby the sensor is simulta-

neously localized relative to this point cloud without any

external positioning system. The 3D mapping is a four-stage

process. First, invalid data points are discarded by filtering.

Second, the map is generated by registering consecutive 3D

captures. Third, accumulated errors are relaxed among all

captures. Finally, the map is enhanced with refinement filters.

1) Filtering: Errors caused by low illumination or occlu-

sion are treated by filtering. A high confidence is related

to a high amplitude (to be precise: this statement is only

a compromise to what the camera provides; see [7] for a

description of error influences). Thresholding the amplitude

discards primarily data resulting from objects with lower

infrared reflectivity, higher distance or from objects that are

located at the peripheral area of the measurement volume

(due to inhomogeneous scene illumination and vignetting

effects). Mismeasurements also occur on jump edges, i.e.,

when the transition from one to another shape appears

disconnected due to occlusions. In order to remove these

invalid points, jump edge filtering has been applied [4]. It is

important to mention that the proposed filter is sensitive to

noise, i.e., besides jump edges, valid points are removed,

if noise reduction filters are not being applied first. The

subsequent application of median and jump edge filtering

achieved the best results in our experiments.

2) Map Generation: Pose changes are assumed to be

small due to the high frame rate. For that, no additional

sensory data as initial guess is needed (e.g., inertial sen-

sors). The estimation is performed relying completely on

the registration of 3D data by the use of the well-known

ICP algorithm [1]. It aims at finding a rigid transformation

between a model point set M and a scene point set D by

performing an iterative least square minimization scheme.

In each iteration step corresponding closest points are de-

termined. Denoting corresponding point pairs as a set of

N tuples {(mi,di)|i = 1 . . . N} and the transformation as

composition of a rotation matrix and a translation vector

(R, t) the error function reads:

E(R, t) =

N∑

i=1

||mi − (Rdi + t)||
2
. (1)

The solution can be determined by several closed-form

algorithms. A detailed description and evaluation of these

algorithms is summarized in [11].
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Fig. 2. Testing against frustum clipping planes: Let f = 0 be the focal point
and {a,b, c,d} vectors from f to the four edge points of a far clipping
plane. Lateral clipping planes are spanned by each two of adjacent vectors.

The normal vectors n = (nx, ny , nz)T of the four lateral clipping planes

are then used to check if a point x = (x, y, z)T is inside the frustum by
xnx + znz < 0 for the left and right clipping planes and yny + znz < 0
for the upper and lower clipping planes.

The original ICP formulation assumes that the scene point

set is completely covered by the model point set [1]. If

the scene includes points which are not part of the model,

wrong correspondences can skew the result [6]. The simplest

solution to discard scene points from a non-overlapping area

is a distance threshold. Corresponding tuples are rejected,

if their Euclidean distance exceeds this threshold. Several

strategies are possible to determine suitable thresholds, e.g.,

a gradual decreasing threshold with respect to the iteration

step. In general, these thresholds increase the registration

performance significantly on only partially overlapping point

clouds. For convenience, the original formulation of the ICP

approach including a distance threshold is called Vanilla ICP

approach in the following.

A plain threshold has limitations in robustness and ac-

curacy. Several approaches have been proposed to improve

registration results for an unknown degree of overlap, e.g.,

the Trimmed ICP approach (TrICP) [2], the Picky ICP algo-

rithm [10], the Iterative Closest Reciprocal Point algorithm

(ICRP) [14] and the X84 rejection rule [6].

The method proposed here to overcome an unknown

degree of overlap addresses the problem formulation more

precisely and intuitively. It stems from 3D computer graphics

and is called frustum culling [8]. A frustum defines the

volume that has been in the range of vision while acquiring

the model point set. Luck et al. used frustum culling for pre-

filtering based on an initial pose estimate [9]. The iterative

registration process was then performed on the reduced data

set. Contrary, the authors employ no initial pose estimation.

Therefore, the frustum culling is embedded in the iteration

process by employing the pose estimate of the previous

iteration step. Scene points outside of the model frustum are

filtered by testing against clipping planes before performing

nearest neighbor searching (cf. Fig. 2).

This test is non-parametric and removes iteratively scene

points from non-overlapping areas by evaluating their vis-

ibility from the model’s viewpoint. During the iteration

process scene points are clipped as soon as they leave

the visibility frustum, which addresses exactly the problem

formulation. This extension is called Frustum ICP approach

in the following.

(a) (b)

Fig. 3. a) 3D map before refinement (bird’s view of scene in Fig. 1). b) 3D
map after refinement. Sparse points are removed and surfaces are smoothed.

3) Error relaxation: Errors sum up due to the limited

sensor precision and accumulation of registration errors from

pairwise ICP matching of consecutive frames. However,

when the field of view is overlapping with an earlier one, a

loop can be closed. This enables SLAM algorithms to bound

the error and to compute a consistent map.

The authors use a GraphSLAM approach [18], [19] that

extends Eq. (1). The graph closes the loop by linking all

overlapping 3D scans. Instead of minimizing the Euclidean

distance between two point pairs, the distance between two

point clouds, connected by a graph edge (j, k), is minimized:

E(R, t)=
∑

j→k

N∑

i=1

||(Rjpj,i + tj) − (Rkpk,i + tk)||
2

(2)

A detailed derivation of this global relaxation formula and a

solution of the minimization problem is given in [11].

4) Refinement: The refinement of a 3D map comprises

filtering of sparse points and approximation of plain patches

to the neighborhood of each point. Removing the set of

sparse points S is done by determining the mean distance

of k-nearest neighbors as a density measure,

d(pi) =
1

k

k∑

n=1

||(pi − pi,n)||, (3)

S = {pi ∈ P | d(pi) < dth}, (4)

where dth is a constant threshold. The set of point candidates

Q for the resulting 3D map includes all remaining points

after filtering:

Q = P\(J ∪ S). (5)

Compared with laser scanners, the noise level of ToF

cameras is much higher. Smooth surfaces appear with a

certain thickness of some centimeters (see Fig. 3(a)). For the

refinement of a composed 3D point cloud a principle compo-

nent analysis (PCA) is performed to detect surface normals.

Related pixels are shifted along these vectors towards the

detected surfaces. The resulting 3D map after applying the

proposed refinement is contrasted in Fig. 3(b).

V. EXPERIMENTS AND RESULTS

The following experiments demonstrate the accuracy and

robustness of the proposed 3D mapping approach. There-

fore, a SR-3k ToF camera with a resolution of 176 × 144
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hor. dist. vert. dist.

/ mm / mm

Ground truth

(meas. tape) 1715 1405

Default

Calibration 1800 1570

Improved

Calibration 1750 1425

Fig. 4. Isometry of resulting 3D map of the laboratory scene (SIII). The
distances of opposing walls were manually measured and assumed to be the
ground truth. The improved calibration reduces deviations from the ground
truth and provide a more accurate mapping result.

pixels is used. The horizontal and vertical apex angles are

45 ◦ and 35 ◦ respectively. At first, laboratory experiments

demonstrate the reachable accuracy and the influences of

the light scattering effect. For this purpose, a ground truth

evaluation is provided by an industrial robot arm (KUKA KR

16) to which the ToF camera has been attached. The robot’s

positioning system has an accuracy of 1mm and 0.1 ◦. At

second, the robustness of the 3D mapping approach is shown

in a larger environment.

A. EVALUATION MEASURES

The quality of a 3D mapping approach can be rated either

by comparing the estimated ego motion or the created 3D

map with an appropriate ground truth. The absolute compar-

ison of poses against this ground truth only provides a weak

objectivity since registration errors can compensate each

other. Therefore, incremental measures are more valid and

suitable, i.e., an integration of angular and translational error

increments induced by registration of subsequent frames. The

translational error measure is defined by

einc,∆t =
∑

||∆tinc,i||, (6)

where ∆tinc,i is the translational registration error of frame

i. In order to make rotational errors comparable, the rotation

axis has to be considered:

einc,∆θ =
∑

|| |∆θr,i|ar,i − |∆θe,i|ae,i||, (7)

where ∆θr,i is the ground truth angle around the ground

truth rotation axis ar,i of frame i, whereas ∆θe,i and ae,i

constitute the estimated counterparts of ICP registration.

Accurate ego motion does not inevitably result in a perfect

3D map. Even with exact sensor localization, inaccuracy

can be induced by corrupted depth measurements. On this

account, the second measure is constituted by the isometry of

the resulting map. Here, characteristic opposing walls within

the scene were manually measured with a tape (cf. Fig. 4).

B. CALIBRATION AND LIGHT SCATTERING

First, the accuracy in ego motion estimation was inves-

tigated in applying two different trajectories. Fig. 5 and

Fig. 6 depict scenes and performed paths. In the first scene

(SI, cf. Fig. 5) the camera moves around a basic geometric

Styrofoam object. Contrary, the object was moved around

the camera in the second scene (SII, cf. Fig. 6).

trans. error rot. err.

/ mm / ◦

Default

Calibration 39.7 4.8

Improved

Calibration 28.2 2.4

Fig. 5. Experimental setup (SI) for identifying the accuracy and demon-
strating the impact of calibration. The camera is rotated by 90 deg around
an object in a distance of 600 mm while keeping it in the center of the field
of view. Thus, a distance of 950 mm is covered. Both, the translational error
and the rotational error decrease due to the proper calibration.

trans. error rot. err.

/ mm / ◦

AD 12.8 1.2

AI 9.9 1.3

B 35.4 2.1

C 36.0 2.1

D 42.1 1.8

Fig. 6. Experimental setup (SII). The camera is stepwise moving (50 mm)
and rotating (22 deg) from C0 to C1. Initially the scene consists of two
Styrofoam cuboids standing on top of each other (case A). The improved
calibration (AI) shows to reduce the translational error from 12.8 mm to
9.9 mm. Then (cases B, C, D), an additional Styrofoam cuboid was put
into the scene. The ego motion estimation results degrade to 42.1 mm.

Data takes for both trajectories were performed twice: with

the default (manufacturer’s) calibration and with an improved

calibration of the ToF sensor. The default calibration consid-

ers fixed pattern phase noise. The improved calibration was

done according to Fuchs et. al. [5] in order to additionally

consider distance-related errors. This approach employs a

spline for estimating a pixel-wise depth measurement cor-

rection value. Fig. 7 depicts the computed correction spline.

In both scenes the calibration reduces the error in ego

motion estimation by ≈ 25%. But, compared to the length of

both trajectories, the translational error in SII is significantly

larger (20%) compared to the error resulting from SI (3%).

The authors conclude that the type of movement is crucial for

the result. Especially in SII, the observed object is moving

at the margins of the field of view where a low resolution

and a small apex angle handicap the ego motion estimation.

In addition, the light scattering has to be considered, as

the second investigation shows. Here, the authors induced

scattering effects by adding an object to SII at several

distances. Fig. 6 demonstrates the results. The nearer the dis-

turbing object moves to the camera the more the ego motion

estimation results degrade. Obviously, the light scattering

affects only the translation. Strong influences are noticeable

when high reflective objects come into the field of view or

when distances to objects in the scene are heterogeneous. The

authors considered this fact in designing the next experiment.

C. 3D MAPPING OF LABORATORY SCENE

Second, the laboratory scene was enlarged (SIII). The

Styrofoam objects were assembled in a square, which mea-

sured approximately 1800mm. This scene (cf. Fig. 8) was
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Fig. 7. Distance calibration result: The identified distance-related error is
plotted by subtracting the measured distance from the real distance. An
overall sinusoidal curve is apparent. Altogether, the camera measures a
greater distance. Thus, a spline is fitted into the error for correction purposes.

(a) (b)

Fig. 8. a) Laboratory environment SII. The ToF camera is mounted on an
industrial robot (KUKA KR 16). b) Bird’s view of the 3D map created in
SIII. The camera was moved stepwise on a circular path with a diameter of
300 mm (green line).

circumferentially captured by moving the camera on a circu-

lar path with a diameter of 300mm. In total, 180 captures

were taken. To reduce the measurement noise, the camera’s

integration time controller was activated, which adjusted the

exposure time between 8ms and 12ms.
Again, two test series with default and improved calibra-

tion were performed. Here, the improved calibration reduced

the pose estimation error only slightly. The authors assume

that light scattering completely adumbrated the results. The

major benefit concerns the isometry of the resulting map.

The deviation from the ground truth (measuring tape) reduces

from 85mm for the horizontal and 165mm for the vertical

distance measure to 35mm and 20mm (cf. Fig. 4).

Furthermore, the authors compared the performances of

Vanilla ICP, Frustum ICP and Frustum ICP with error

relaxation applying them to the calibrated data. Fig. 9(a) and

9(b) illustrate the resulting maps. The green line represents

the estimated ego motion of the camera. Both paths only

partially agree with the circle in Fig. 8. An experiment

employing the ground truth poses as initial guess for the ICP

registration provided convergence to nearly the same minima.

Thus, errors in ego motion estimation primarily arise from

unsystematic errors, i.e., light scattering and multiple-ways-

reflection. The effect is more noticeable for the second half

of the circle, where near objects appeared in the field of view.

Fig. 9(c) and 9(d) contrasts the performance of the employed

ICP approaches. The Frustum ICP approach provided more

robustness and higher accuracy as the Vanilla ICP approach.

The registration error could be additionally reduced by error

relaxation.

D. 3D MAPPING OF LARGER ENVIRONMENTS

In the last experiment the robustness of the mapping was

tested in a larger environment, the robotic pavilion at the

Fraunhofer Institute IAIS (cf. Fig. 1). It sizes 19.4m in

the longest distance. In total, 325 captures have been taken

on a closed trajectory. Since the unambiguity interval is

limited to 7.5m, farther measurements appear closer (modulo

7.5m) than they are. Mostly, the amplitude value can be

used to discard those measurements, but not in all cases.

These mismeasurements occur especially when surfaces with

specular reflectivity are present, e.g., mirrors, window panes

and metallic surfaces. Future technologies will address this

problem on the sensor level, e.g., by the employment of

multiple frequencies or binary coded sequences. This scene

is more dynamic compared with the laboratory scene, i.e.,

the working range is larger and there is more variability of

NIR reflectivity. The integration time controller adjusted the

exposure time between 21ms and 65ms.
Ground truth data (i.e., an external positioning system) was

not available. Therefore, the mapping accuracy is evaluated

with the distance between two opposing walls and with the

pose estimation error after loop closing. The start-to-end

frame registration before relaxation provided an accumulated

error of ||∆t|| = 1.74m and ||∆θ|| = 9.03◦, which is small

enough to perform loop-closure. The calculated distance of

two opposing walls from the 3D map compared with the

distance determined with a measuring tape deviates 0.4m
(Measuring tape vs. 3D cloud: 10.8m / 11.2m; cf. Fig. 10).

The improved calibration particularly affects the rotational

error (cf. Table I).

3DOF 6DOF

Calib. method ||∆t|| / m ∆θ / ◦ ||∆t|| / m ∆θ / ◦

Default 0.27 26.10 1.23 31.58

Improved 0.30 0.81 1.74 9.03

TABLE I

COMPARISON OF POSE ESTIMATION EMPLOYING DIFFERENT

CALIBRATION METHODS.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a method for accurate 3D mapping

with a ToF camera. The achievable precision and the im-

pact of the light scattering were demonstrated in several

experiments in a laboratory environment. Several measures

were necessary for achieving the presented results. First,

a calibration method has been applied to reduce distance

measurement errors. Second, the removement of mismea-

surements has been achieved by the development of suitable

filters. Third, robust pose estimation was achieved by an

improved ICP algorithm. Finally, the consistency of a 3D

map has been enhanced in a refinement step, relaxing accu-

mulated errors and smoothing surfaces. The robustness of the
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Fig. 9. a,b) 3D Map reconstruction with green colored estimated trajectories. a) Frustum ICP with b) error relaxation. Remaining trajectory distortions
are caused by non-systematic errors. c,d) Ground truth comparison of ICP registration. The proposed Frustum ICP extension is benchmarked against the
Vanilla ICP approach. Global relaxation further improves the accuracy. c) Incremental angular error measure. Please note the large error induced for the
Vanilla ICP between frame 160 and 170 in (c), which were caused by convergence to wrong local minima. The Frustum ICP provided more robustness.
d) Incremental translational error measure.

Fig. 10. 3D map of the whole robotic pavilion (perspective view of scene
in Fig. 1). The trajectory (estimated poses of each frame) is drawn in green.

entire approach has been demonstrated while registering 325

single captures obtained from a larger indoor environment.

By providing the underlying data set of the laboratory

scene on our website1, the authors want to motivate further

investigations in 3D mapping based on ToF camera data.

Future work will concentrate on the improvement of

calibration, e.g., the consideration of fluctuation in depth

measurements caused by exposure time control, on the

improvement of 3D map creation, e.g., by enhancing the

semantic information, and on fusing ToF camera data with

additional sensory information, e.g., with inertial measure-

ment units.
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