3D Pose Estimation and Mapping with Time-of-Flight Cameras

S. May¹, D. Dröschel¹, D. Holz¹, C. Wiesen¹ and S. Fuchs²

Objectives

3D Pose Estimation and Mapping

Based on ToF camera data

No additional sensors

Pose estimation on-the-fly during exploration

Only few approaches can be found [Ohno,06],[Sheh,06],[Prusak,07]

SwissRanger SR-3k

Pixel array resolution: 176 x 144 pixels Field of view: 47.5° x 39.5° Non-ambiguity range: 7.5 m (20 MHz) Frame rate: variable (typical 25 fps)

Fig.: Swissranger SR-3k [Mesa,08]

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

10 m

0 m

Outline

- Objectives
- 3D Sensing with ToF Cameras
- 3D Environment Mapping
- Experiments and Results
- Conclusion / Future Work

Non-Systematic Errors [Lange,00]

Photocharge Conversion Noise: noise added in the process of converting optical information in an analogous signal

Quantization Noise

Electronic Shot Noise (Quantum Noise): Poisson-distributed nature of the arrival process of photons and the generation process of electron-hole pairs

$$\Delta r = \frac{c}{4 \pi f_m} \frac{\sqrt{b_l + b_b}}{\sqrt{2 a}}, \qquad (1)$$
Indoor applications: $\Delta r \propto d$,
Outdoor applications: $\Delta r \propto d^2$,
 Δr

Non-Systematic Errors (cont'd)

Interreflection (multiple ways reflection)

- Superposition of measurements
- Hollows and corners appear rounded off

Light Scattering

• Near bright objects superpose measurements from the background

Jump edges

- Multimodal measurements
- Appears as smooth transitions between shapes

IAIS

Systematic Errors

Circular Distance Error

• NIR-LED signal is nonharmonic sinusoidal

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Systematic Errors

Amplitude Related Error

- Objects in the same distance with different infrared reflectivity provide different range measurements
- Low amplitude = high degree of noise

Systematic Errors

Inhomogeneous Scene Illumination

- Illumination decreases in the pheripherial area (entails amplitude related errors and varying SNR)
- (Issue for feature extraction)

Fixed Pattern Noise

- Related to latencies and different material properties in each CMOS gate (constant pixel offset)
- Signal propagation delay

IAIS

Outline

- Objectives
- 3D Sensing with ToF Cameras
- 3D Environment Mapping
- Experiments and Results
- Conclusion / Future Work

Main issues

Accuracy / Precision of range measurements

- Filtering
- Calibration

Large amount of data (provided with up to 30+ fps)

• Reduction of data (Scanline Approximation, SIFT, KLT)

Accumulation of errors during registration process

• Distrubution of error after loop-closure

Evaluation

- Comparison of calculated pose with ground truth data (KUKA robot arm)
- Isometry of map
- First-to-last registration error

Filtering

Amplitude-Range Ratio (assuming: $\Delta r \propto$ d)

IAIS

Fraunhofer _{Institut} Intelligente Analyse- und Informationssysteme

Filtering

Jump edge filtering

Let $P = {\mathbf{p}_i | \mathbf{p}_i \in \mathbb{R}^3, i = 1, ..., N_p}$ be a set of 3D points in the camera coordinate system and $P_n = {\mathbf{p}_{i,n} | n = 1, ..., 8}$ the set of neighbor points of $\mathbf{p}_{i'}$ jump edges J can be selected with

$$\xi_{i} = \max \arcsin\left[\frac{\|\mathbf{p}_{i,n}\|}{\|\mathbf{p}_{i,n} - \mathbf{p}_{i}\|} \sin \varphi\right], \quad (2)$$

$$J = \{ \mathbf{p}_{i} \mid \xi_{i} > \xi_{th} \},$$
 (3)

where

 ϕ : apex angle of two neighboring pixel ξ_{th} : threshold

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

IAIS

Challenges

Small apex angle (3D data might have low structure) High degree of measurement errors

Pose Estimation

ICP (Iterative Closest Point) matching [Besl,92] ICP matching on edges (scanline approx.) [Sappa,01] SIFT (Scale Invariant Feature Transformation) [Lowe,04] KLT (Kanade-Lucas-Tomasi) tracking [Lucas&Kanade,81] [Tomasi&Kanade,91] Extension for ICP

- Trimmed ICP [Prusak,07]
- Discard border assignments [Prusak,07]
- Weighting based on amplitude data

Fig.: Scene / Model matching

Refinement

- Error distribution (First-to-last registration)
- PCA analysis (surface detection)

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

IAIS

Outline

- Objectives
- 3D Sensing with ToF Cameras
- 3D Environment Mapping
- Experiments and Results
- Conclusion / Future Work

Experiments and Results – Introduction Calibration Issues

Three possible approaches for ToF camera calibration

High Precision Measurement Rack	Robot serving as External Postioning System [Fuchs,07],[Fuchs,08]	No External Positioning System
 Very accurate for the whole working range of the ToF camera Very laborious 	 Limited to working range of robot Efficient and sufficient for robotic applications 	• Whole working range of the camera feasible, but limited by the Dimensions of the calibration pattern and the resolution of the camera

Experiments and Results – Photogrammetric and Depth Calibration

- Intrinsic parameter estimation applying a chequer board calibration pattern (DLR CalDe, Callab)
- Either using a robot as external positioning system
- Or estimating the calibration pattern pose from the image data (corners and known grid size)
- Identifiing spline parameters for distancerelated measurement error

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Experiments and Results – Calibration Results for several Integration Times

- Correction spline depends on the camera's integration time
 → The higher the integration time, the closer the measurements
- The calibration becomes imprecise for distances greater than 3500 mm
 - \rightarrow Small resolution and apex-angle cause imprecise calib plane pose estimation
 - ightarrow The spline does not fit a harmonic sinus

Experiments and Results – Mapping of a Labratory Scene

Objective: Evaluation of accuracy of ego-motion estimation

Performance of pose estimation is dependend on scene (e.g. texture, surface/edge ratio)

Small apex angle is the most restricting sensor modality

With some extensions (discarding border assignments, amplitude based weighting) accuracy of ICP increases: $\Delta t < 150$ mm, $\theta < 4^{\circ}$

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Experiments and Results – Mapping of a Labratory Scene

Objective: Evaluation of accuracy of ego-motion estimation

Scene extends 1800 x 1800 mm of styrofoam objects

SR3000 attached to an Industrial robot and calibrated

360° rotation, 180 depth images, path length 950 mm

	Accuracy in ego-motion estimation	Reconstruction error
Manufacturer's calibration	175 mm and 7°	Horizontal: 165 mm Vertical: 85 mm
Individual improved calibration	150 mm and 4°	Horizontal: 35 mm Vertical: 20 mm

Fraunhofer Institut Intelligente Analyse- und Informationssysteme

Experiments and Results – Mapping of a Larger Scene

Dealing with great working range and high dynamics regarding the integration time and object's reflectivity

Evaluation of accuracy with extended ICP

Dimension: 19.4 m in the longest distance Isometry measure: 11.2 m (vs. 10.8 m)

	Pose estimation in 3 DoF (x,z,θ _y)	Pose estimation in 6 DoF
Manufactuer's calibration	270 mm 6°	1230 mm 32°
Individual improved calibration	300 mm 1°	1740 mm 9°

IAIS

Outline

- Objectives
- 3D Sensing with ToF Cameras
- 3D Environment Mapping
- Experiments and Results
- Conclusion / Future Work

Conclusion and Summary

- Possibility of 3D mapping with ToF cameras
- Fully 2.5D captures allows for mapping during motion (avoids stop-scan-go behavior)
- Complex error model manageable with calibration and filtering
- Scene-dependent performance of tested pose estimation approaches

Outlook / Future Work

- More systematic evaluation of accuracy in pose estimation (more suitable path/motion)
- Including global scan relaxation approach
- Comparing performance with other ToF cameras (e.g. IFM O3D100)
- Improvement of calibration by using a greater calibration pattern

Video demonstration

see: http://www.iais.fraunhofer.de/3325.html

References

- [Besl,92] P. Besl and N. McKay, A method for Registration of 3D Shapes, IEEE Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, pp. 239-256, 1992.
- [Fuchs,07] S. Fuchs and S. May, Calibration and registration for precise surface reconstruction with ToF cameras. Proceedings of the Dynamic 3D Imaging Workshop in Conjunction with DAGM (Dyn3D), vol. I, 2007.
- [Fuchs,08] S. Fuchs and G. Hirzinger, Extrinsic and Depth Calibration of ToFcameras. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
- [Lange,00] R. Lange, 3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology, Dissertation, University of Siegen, 2000.
- [Lowe,04] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
- [Lucas,81] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. International Joint Conference on Artificial Intelligence, pages 674-679, 1981.
- [Mesa,08] Mesa Imaging AG. SwissRanger SR3000. Website, 2008. Retrieved September 16, 2008, from http://www.mesa-imaging.ch
- [Ohno,06] K. Ohno, T. Nomura and S. Tadokoro, Real-Time Robot Trajectory Estimation and 3D Map Construction using 3D Camera. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006.
- [Prusak,07] A. Prusak, O. Melnychuk, H. Roth, I. Schiller and R. Koch. Pose Estimation and Map Building with a PMD-Camera for Robot Navigation. Proceedings of the Dynamic 3D Imaging Workshop in Conjunction with DAGM (Dyn3D), vol. I, 2007.
- [Sappa,01] A. Sappa, A. Restrepo-Specht and M. Devy, Range Image Registration by using an Edge-Based Representation. In: Proceedings of the International Symposium of Intelligent Robotic Systems (SIRS), 2001.
- [Sheh,06] R. Sheh, M. W. Kadous and C. Sammut, On building 3D maps using a Range camera: Applications to Rescue Robotics, Technical Report UNSW-CSE-TR-0609, School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia, 2006.
- [Tomasi,91] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie Mellon University Technical Report CMU-CS-91-132, April 1991.

Thank you for your Attention!

