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Abstract— Autonomous robotic exploration of initially un-
known environments is at the basis of several applications,
including map building and search and rescue. Despite the
many recent works on robotic exploration, an issue that has
not been adequately addressed in the literature so far is the
evaluation of the impact of the perception (for map update)
and decision (about where to go next) timing on the behavior
of an exploring robotic system. In this paper, we contribute to
fill this gap by providing a quantitative experimental analysis
of how frequencies of perception and decision influence the
performance of an exploring mobile robot. Results, obtained
with an experimental simulation framework (implemented and
made publicly available) based on ROS and Stage, confirm the
intuitive idea that the best performance is obtained with fast-
paced perceptions and decisions, but also suggest some trade-
offs for the values of perception and decision frequencies in
some settings.

I. INTRODUCTION

Mobile robots that autonomously explore initially un-
known environments are relevant for many applications, from
map building [1] to search and rescue [2]. Arguably, two of
the most important aspects of exploration are the integration
of perceived data into the current map of the environment and
the decision about where to move next in a partially known
environment. These two activities are performed by robots
either in an event-based fashion (e.g., when a destination
location is reached) or in a frequency-based fashion (i.e.,
after a fixed amount of time). Usually, papers consider only
a single combination of perception and decision modalities.
This makes it difficult to assess the impact of the perception
and decision timing on the performance of an exploring
robotic system.

In this paper, we provide a quantitative analysis of the im-
pact of timing of perception and decision on the performance
of an exploring mobile robot. We consider these parameters
as particularly important for autonomous exploration because
they are mostly related to the robot control software, while
other parameters, like robot speed, sensor speed, and sensor
range are, although controllable to some degree, more related
to the hardware equipment. The motivation of our work is to
provide designers with insights on perception and decision
frequencies to develop better exploring robotic systems.

We consider a single mobile robot equipped with a laser
range scanner to discover the physical structure of an initially
unknown environment. The basic exploration process goes as
follows: (a) the robot perceives the surrounding environment,
(b) it integrates the perceived data into a map representing the
environment known so far, (c) it decides where to go next,

and (d) it moves to the selected location and starts again from
(a). We focus on the timing at which the activities (b) and (c)
are performed. More precisely, we consider perception as the
process of acquiring sensor data and integrating them into the
current map and decision as the process of selecting the next
destination location. Note that the timing of perception that
we consider is exclusively related to map building. We do
not consider the timing of acquisition of sensor data that are
used to localize the robot, but the timing at which the map
(the primary source of information for decision) is updated.

In this paper, whose nature is mainly experimental, we use
standard platforms for the development of the robotic system
(ROS [3]) and for its simulation in different environments
(Stage [4]), according to the principles of emerging good
experimental methodologies [5].

This paper is structured as follows: after a discussion
of related work in Section II, we present our framework
for evaluating the performance of exploration under dif-
ferent perception and decision timings in Section III. Our
experimental methodology, the conducted experiments, and
the obtained results are described in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK

Robotic exploration of initially unknown environments
has been addressed in recent years by many works. The
dominant approach is greedy [6], also called Next Best View
(NBV), and operates by cyclically evaluating some candidate
destination locations and by assigning the best ones to robots.
Candidate destination locations are usually selected on the
frontiers between the known and the unknown portions of the
environment [7]. They are valuated according to an utility
function (exploration strategy) that considers some criteria
like the distance of a location from the robot(s) and the
expected amount of information that a robot can acquire
from a location [8]. However, the impact of perception and
decision timing on the exploration performance has not been
considered and investigated so far. Explicit information about
when perceptions and decisions are performed are rarely
reported in papers. According to the available data, we
can broadly classify the published works according to the
following classes.

Event-based vs. frequency-based perception. In case
of event-based perceptions, only the data acquired at the
destination location is integrated into the current map of



the environment. This means that a robot “blindly” nav-
igates from its initial location to the destination location
moving along a path inside the known free space, without
updating the map. In frequency-based perception, data is
continuously acquired and integrated into the map, at some
fixed frequency, as the robot navigates toward the destination
location. This frequency can depend either on the sensor
acquisition frequency or, more often, on the update frequency
of the map building method employed (e.g., the map is
updated after a certain distance, after a certain rotation angle,
or after a certain amount of time). Note that these timings
are related only to map updates for exploration purposes.
Indeed, depending on the methods used for map building and
localization, data acquired during navigation can be used for
localization and path following, but we do not consider the
timing of these acquisitions if they do not enrich the map
built by exploration.

Event-based vs. frequency-based decision. In the first
case, a decision about the next destination location is made
only when the previous destination location has been reached
(or after that location has been declared unreachable, for ex-
ample after a timeout expired). In the second case, decisions
about the next destination location are continuously made, at
some fixed frequency (for example, in [9] a new decision is
basically made every 4 seconds), while the robot is moving
toward the current destination location (implementing a sort
of opportunistic behavior).

Table I classifies some of the most significant papers on
robotic exploration according to the above dimensions. The
aim of the table is not to exhaustively classify all works
in the area, but only to provide an overview based on a
significant sample of published papers. We mainly focus on
works employing a single robot, but our considerations hold
also for multi-robot exploration (e.g., [10]–[12]).

TABLE I: Perception and decision modalities employed by some papers

perception
event-based frequency-based

decision event-based [7], [11], [13]–[19] [10], [12], [20]
frequency-based - [9], [21], [22]

Most works consider event-based perception and decision.
This is not surprising because of ease of implementation of
such configuration. Although they use different exploration
strategies and different map representations, these works
basically consider reaching the current destination location
as the event that triggers the acquisition of new data from
sensors and their incremental integration into the current map
as well as the decision making about the next destination lo-
cation. Relatively less works use frequency-based perception
and decision. Unsurprisingly, no work considers event-based
perception and frequency-based decision. This is expected
since it makes little sense to decide repeatedly about the
next destination location on the basis of the same information
about the environment.

Some recent works have partially addressed the study of
the effects of perception and decision timing on exploration
performance. For instance, [20] explicitly recognizes one of

the main problems of event-based decision under frequency-
based perception: since the map is continuously updated
according to data coming from long range sensors, the
robot might have fully explored a region (e.g., a dead-end
corridor) before actually reaching the selected destination
location. In [20], a heuristic is proposed to avoid to reach
such destination locations if there is nothing the robot could
discover there. This amounts to discard the old decision about
the destination location. This approach is different from that
evaluated in this paper, in which decisions are regularly
revised at a given frequency, allowing the current destination
location to be discarded and to opportunistically reach a more
promising destination location.

A similar problem is recognized in [23] and some (fast)
frontier detection algorithms are proposed as a support for
making decisions about destination locations at a high fre-
quency, up to 10Hz (as it can be deduced from experiments).

Beyond these partial attempts, and to the best of our
knowledge, a systematic analysis of the impact of perception
and decision timing on the performance of exploration is still
missing. In this paper, we aim at contributing to fill this gap.

III. EXPERIMENTAL FRAMEWORK

We assume to have a mobile robot equipped with a 180◦

laser range scanner. Exploration is performed as a sequence
of movements to destination locations, selected according
to the exploration strategy. Decisions about destination loca-
tions can be made either in an event-based or in a frequency-
based fashion, in this last case with a frequency fd that
can be set by the designer. During navigation, the robot
perceives the surrounding environment either in an event-
based or in a frequency-based fashion, also in this last case
with a configurable frequency fp.

Each perceived sensor reading is used to update a global
map, that represents the environment. The global map is a
finite two-dimensional grid, whose cells are identical squares,
at a resolution of 0.2m. Each cell can be unknown, free, or
occupied. Free and occupied cells are considered known.

Given a map represented as above, to calculate candidate
destination locations, we consider reachable free cells that
are on the boundary between known and unknown cells.
Then, a set of 8-adjacent boundary cells are grouped in
a cluster, called frontier. The centroid of each cluster is
considered as a candidate destination location to reach. Each
candidate destination location is represented as a cell position
in the grid together with the orientation that the robot
should take when the location is reached. The orientation is
toward the unknown area along the perpendicular to the line
tangent to the corresponding frontier and passing through the
candidate destination location cell.

The utility u(p, r) of a candidate destination location p for
a robot r is evaluated according to two exploration strategies
taken from the literature, which combine the following
criteria in their utility functions:

• A(p) is the expected information gain at p, computed
according to the frontier size (i.e., the number of cells



belonging to the cluster of p scaled with the cell
resolution, to have the length of the frontier);

• d(p, r) is the distance between p and current position
of r; given p and r, this criterion is calculated using a
path planner, based on Dijkstra algorithm, on the grid
map that returns the length of the path;

• o(p, r) is the cost related to the heading change that
the robot should perform, computed according to the
difference between the orientation required at p and the
current orientation of r.

The first exploration strategy is based on a weighted
average of the individual criteria (as for example in [10]):

u(p, r) = wAA(p)− wdd(p, r)− woo(p, r) (1)

where wj indicates the weight associated to criterion j.
The second exploration strategy is called MCDM strategy

and combines the criteria of the set N = {A, d, o} using the
Multi-Criteria Decision Making (MCDM) approach. Please
refer to [8] for a complete description. Here we just sketch
the approach and its main parameters. We call uj(p, r),
with j ∈ N , the utility value for candidate destination
location p and robot r according to criterion j. Utilities are
normalized to a common scale I = [0, 1], using a linear
relative normalization. Note that the larger uj(p, r), the better
the location p for robot r.

Basically, the MCDM strategy replaces function (1) with:

u(p, r) =
∑
j∈N

(u(j)(p, r)− u(j−1)(p, r))µ(A(j)), (2)

where µ : P(N) → [0, 1] (P(N) is the power set of set
N ) is a normalized fuzzy measure on the set of criteria N
that associates a weight to each group of criteria. Slightly
overloading the notation, u(j), with (j) ∈ N , indicates the j-
th criterion according to an increasing ordering with respect
to utilities, i.e., after the n criteria have been ordered to have,
for candidate location p and robot r, u(1)(p, r) ≤ . . . ≤
u(n)(p, r) ≤ 1. It is assumed that u(0)(p, r) = 0. Finally, the
set A(j) is defined as A(j) = {i ∈ N |u(j)(p, r) ≤ ui(p, r) ≤
u(n)(p, r)}. Using (2) amounts to perform a sort of “dis-
torted” weighted average of the utilities of criteria and is a
more principled way than (1) to compute utilities, because it
allows to consider importance of criteria and their mutual
dependency relations. We consider these two exploration
strategies because weighted average is less computationally
expensive than MCDM. In this way, we can evaluate if the
computational cost of making decisions has an impact on
the exploration performance, given perception and decision
timing.

In order to perform repeated tests under controlled
conditions, we developed a ROS [3] package (publicly
available at http://sourceforge.net/projects/
explorationeval) for experimentally evaluating explo-
ration strategies with different perception and decision timing
using the Stage simulator [4]. The performed experiments
considered simulated robots with realistically noisy odom-
etry that affects both movement and sensing capabilities.

Our package mainly depends on the following other ROS
packages (some of which have been adapted or extended):
• explore. It implements frontier-based exploration (we

added the MCDM exploration strategy to the default
implemented strategy, which is weighted average). Next
best frontier is selected at frequency fd or when the
current frontier is reached.

• move base. It implements the action of movement to a
destination location by following the trajectory returned
by the planner.

• gmapping. It provides laser-based SLAM (Simultaneous
Localization and Mapping) using a grid map. Map of the
environment is updated when a perception is acquired
(at frequency fp or when the current frontier is reached).

• costmap 2d. It implements a two-dimensional costmap
which takes in sensor data from the world, builds an
occupancy grid from the data, and assigns costs to cells.

• stageros. It implements two-dimensional robot simula-
tion using Stage.

IV. EXPERIMENTAL RESULTS

For our experimental evaluation, we consider three indoor
environments: maze, fort, and open (Fig. 1, the unit in the
figure is 3m), which are all publicly available as part of the
ROS bosch common package, of the fort ap hill 07b, and
of the acapulco convention centre data sets at Radish [24],
respectively. The three environments present several chal-
lenges for exploration, including dead-ended corridors and
intersections where the best decision about where to go next
is not obvious if the environment is only partially known.
Moreover, two environments are rather structured while the
last one presents an empty large area.

The robotic platform used is a Segway-RMP robot
equipped with a SICK LMS200 laser range scanner, with a
maximum range of 8m and angular resolution at 1◦. We use
the weights reported in the following tables for weighted av-
erage (left) and MCDM (right) exploration strategies, which
have been set, after some preliminary experiments, in order
to obtain good performance (we also experimentally verified
that slightly different values provide similar performance).

criteria w()

A 1.0
d 0.005
o 0.0

criteria µ()
A 0.5
d 0.3
o 0.1

criteria µ()
A, d 0.9
A, o 0.7
d, o 0.4

We use six values for perception/decision frequencies fp
and fd, namely 0.2, 0.4, 0.6, 1.0, 2.0, and 4.0 Hz. (smaller
values make exploration too slow and larger values require
too computational effort). We also use the combination
of event-based perception and event-based decision. We
refer to a combination of exploration strategy and percep-
tion/decision modalities as setting. For each environment,
and for 10 randomly selected initial robot poses (shown by
arrows in Fig. 1), we performed 5 runs per setting. For the
runs correctly terminated, we measured the average (over
initial locations and runs, namely over 50 values) travelled



Fig. 1: Maze (left), fort (center), and open (right) environments

distance (in m) and the time required (in s) to map 90% of
the free area of the environments. This termination criterion
is of interest, for example, in rescue applications, for which
knowing the general structure of an environment is more
important than exploring completely the few last posts [22].

Figs. 2, 3, and 4 show results1 for the maze, fort, and open
environment, respectively. For each environment, the two
leftmost graphs are relative to weighted average exploration
strategy, while the two rightmost graphs are relative to
MCDM. Moreover, for each environment and exploration
strategy, the left-hand graph shows the average travelled
distance with respect to the perception and decision fre-
quencies, while the right-hand graph shows the average time
to complete the exploration with respect to perception and
decision frequencies. For ease of reading we discretize the
values of travelled distance and exploration time in five bins,
with the darker the better.

Some interesting trends emerge from the above results and
are discussed below.

Distance vs. perception frequency. Given a decision fre-
quency, there is an optimal interval of perception frequencies
with respect to travelled distance. Increasing the number of
perceptions in a given time interval reduces the travelled
distance because the robot sees the environments at a higher
pace. For example, in the maze environment, with MCDM
and fd = 1.0 Hz, average distance changes from 151.0m
to 113.8m when fp changes from 0.2Hz to 1.0Hz. This
difference is statistically significant (p-value=2.37 · 10−11)
according to an ANOVA analysis with a threshold for
significance p-value < 0.05 [25]. In all the environments,
the reduction of travelled distance tends to reach a plateau
when the perception frequency grows, suggesting that there is
some “optimal” travelled distance for an environment [26].
For example, in the open environment, with MCDM and
fd = 1.0 Hz, average distance changes from 299.8m to
293.3m when fp changes from 2.0Hz to 4.0Hz, a difference
that is not statistically significant (p-value=0.77).

Distance vs. decision frequency. Given a perception
frequency, the travelled distance generally decreases when
the decision frequency increases. For example, in the maze
environment, with MCDM and fp = 1.0 Hz, average
distance changes from 123.3m to 113.8m when fd changes

1Complete results are available at http://sourceforge.net/
projects/explorationeval.

from 0.2Hz to 1.0Hz (p-value=0.044). In a way, this is an
expected behavior, because the more frequently decisions are
revised, the better their outcome. Moreover, at a deeper level
of analysis, this result also shows that the robot have not
any “schizophrenic” behavior, namely it does not change
destination location every time a new decision is taken,
at least in the maze and fort environments. Indeed, if that
was the case, the distance would have shown an increase
with growing decision frequency. In other words, the two
exploration strategies we tested have the nice property of
estimating accurately the goodness of a destination location
in the maze and fort environments and this estimate is
usually not changed if more data about the environment is
collected. In the open environment and considering MCDM
(Fig. 4, third graph from left), the graph shows that there is a
region in which increasing decision frequency can worsen the
travelled distance, even if this is not statistically significant.
For example, with fp = 2.0 Hz, average distance changes
from 263.9m to 297.6m when fd changes from 2.0Hz to
4.0Hz (p-value=0.93).

Time vs. perception frequency. When the perception
frequency increases, the robot collects data about the envi-
ronment at a higher rate and the exploration time decreases.
For example, in the maze environment, with weighted aver-
age and fd = 1.0 Hz, average time changes from 306.8 s
to 233.9 s when fp changes from 0.2Hz to 1.0Hz (p-
value=1.34 · 10−34). However, in some settings, when the
perception frequency becomes too high, the robot spends
a significant amount of time in updating the map and the
exploration time slightly increases even if not significantly.
For example, in the open environment, with weighted average
and fd = 2.0 Hz, average time changes from 804.2 s
to 966.2 s when fp changes from 1.0Hz to 4.0Hz (p-
value=0.002).

Time vs. decision frequency. A similar behavior is
encountered when looking at the impact of the decision
frequency on the exploration time. With a very high decision
frequency, the robot spends time in decision making (i.e.,
in evaluating the candidate destination locations) and the
exploration time tends to increase with MCDM. This is more
evident in the fort environment, which is more complicated
than the maze environment, in which the exploration path
is almost fixed. For example, in fort environment, with
weighted average and fp = 2.0 Hz, when fd changes
from 1.0Hz to 4.0Hz average time changes from 326.6 s



Fig. 2: Results for the maze environment, using weighted average (two leftmost graphs) and MCDM (two rightmost graphs)

Fig. 3: Results for the fort environment, using weighted average (two leftmost graphs) and MCDM (two rightmost graphs)

Fig. 4: Results for the open environment, using weighted average (two leftmost graphs) and MCDM (two rightmost graphs)

to 385.4 s (p-value=8.06 · 10−4), whereas, in maze environ-
ment, it changes from 225.8 s to 234.8 s (p-value=0.034).
With weighted average, instead, the increase of the decision
frequency does not seem to affect too much the exploration
time. This could be explained by the fact that MCDM
exploration strategy requires more computational effort than
weighted average exploration strategy. In the open envi-
ronment, exploration time has different trends according to
different perception frequencies for both exploration strate-
gies. With weighted average, it seems that increasing the
decision frequency does not affect too much the exploration
time. Instead, with MCDM, for low perception frequencies,
high decision frequency can worsen exploration time, while
for high perception frequencies, settings with high decision
frequencies obtains similar results to those with low decision
frequencies. These results in the open environment suggest
that decision making in unstructured environments needs an
updated map to reliably choose a candidate location.

Distance and time vs. perception and decision fre-
quencies. Looking at the impact of combined frequencies
on travelled distance and time, it emerges that, in general,
there is an interval of frequencies that guarantee the best
performance. However, there are some differences related to
exploration strategies and environments, as discussed below.

Weighted average and MCDM exploration strategies
vs. environments. With weighted average, the travelled dis-

tance and the exploration time tend to reach a wide plateau,
at almost the optimal “height”, when the perception and
decision frequencies increase. With MCDM, both the optimal
travelled distance and the exploration time are obtained for
a narrower interval of frequency values, in the fort and
open environment. For example, in open environment, an
optimal combination of decision and perception frequencies
seems to be fp = 0.4 Hz and fd = 0.6 Hz, with average
distance of 244.3m and average time of 763.0 s. For small
changes in the values of the frequencies, results worsen,
especially regarding exploration time. This can be explained
by the higher computational effort required by MCDM, de-
grading the performance when decision frequency increases
too much. In the open environment, the optimal travelled
distance and the exploration time are in a narrower interval
of frequency values compared to the case of maze and fort
environments, even for the weighted average. This could be
explained by considering that, in structured environments,
the movements of the robot are “forced” by the presence
of walls, lessening the impact of chosen frequencies values,
while, in unstructured environments, the robot can possibly
go in any direction and so carefully setting frequencies of
perception and decision is more critical.

Finally, we present some results about event-based percep-
tion and decision. Fig. 5 shows results relative to the maze
environment for event-based perception and decision, for



frequency-based perception (fp = 5.0 Hz) and event-based
decision, and for frequency-based perception and decision
(fp = 1.0 Hz and fd = 1.0 Hz). The left-hand graph shows
the average travelled distance, while the right-hand graph
shows the average exploration time for each of the above
combinations.

Fig. 5: Results for the maze environment (EB = Event-Based, FB =
Frequency-Based, P = Perception, D = Decision)

Results confirm, as expected, that better performance
is obtained with frequency-based perception and decision.
For example, for MCDM, changing from event-based to
frequency-based perception and decision, average distance
changes from 309.4m to 113.8m (p-value=4.65 ·10−44) and
average time changes from 703.0 s to 256.6 s (p-value=5.51 ·
10−48). Note that MCDM performs worse than weighted
average. This could be explained since the maze environment
is rather simple and does not require any complex exploration
strategy.

V. CONCLUSION

In this paper, we addressed the quantitative analysis of the
impact of perception and decision timing on the performance
of an exploring mobile robot. Our results aim at supporting
the design of better robot systems for the exploration of
unknown environments, by providing the designers of robot
control systems some experimental evidence about trade-
offs between perception and decision frequencies. Results
obtained in our experimental settings show that, as expected,
frequency-based perception and decision outperform event-
based perception and decision. Moreover, although increas-
ing perception and decision frequencies generally increases
performance, when these frequencies become too high, per-
formance starts to degrade due to increased computational
effort. In unstructured environments, properly setting per-
ception and decision frequencies seems to be more important
than in structured environments, as decisions should be made
with updated information and with right timing because the
environment is not “driving” the robot.

The work presented in this paper enlightens some aspects
of robotic exploration that have not received much attention
so far; however, our results are not exhaustive nor definitive.
For example, quality of the resulting map and the amount of
area mapped over time could be included in the adopted
metrics. Moreover, other environments, including outdoor
areas, different map building methods (alternative to gmap-
ping), and multiple robots should be considered in further
experiments.
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