
1 Einleitung

Wir beschäftigen uns mit der affinen Grassmannschen GG einer reduktiven
abgeschlossenen Untergruppe G der SLn, definiert über einem algebraisch abge-
schlossenen Körper k beliebiger Charakteristik. Dabei ist GG ein ind-darstellbarer
k-Raum, dessen k-wertige Punkte durch G(k((z)))/G(k[[z]]) gegeben sind. Die
Konstruktion von GG wird in den Abschnitten 3 und 4 detailliert ausgeführt.
Auf GG operiert G(k[[z]]) in natürlicher Weise. Die Bahnen dieser Operation
werden durch die dominanten Kogewichte λ ∈ Λ+

G von G parametrisiert. Wir
schreiben Gλ für die zu λ assoziierte Bahn.
Eine (affine) Schubertvarietät in GG ist der Abschluss Gλ ⊂ GG eines G(k[[z]])-
Orbits Gλ.
Es ist bekannt, dass

Gλ =
⋃̇

λ′∈Λ+
G

λ′≤λ

Gλ′ (1)

Man stellt fest, dass Gλ singulär ist. Es gilt sogar, dass der glatte Ort von Gλ
nur Gλ ist (siehe [Malkin et al., 2005]).
Wir betrachten im Folgenden einen bestimmten Teil dieser Singularität:
Ein Paar (λ, µ) von dominanten Kogewichten von G mit λ ≤ µ heisst minimale
Degeneration von Kogewichten, falls λ und µ in der Ordnung der dominanten
Kogewichte benachbart sind. Mit anderen Worten, falls für alle dominanten
Kogewichte ν von G gilt, dass aus λ ≤ ν ≤ µ entweder ν = λ oder ν = µ folgt.
Das bedeutet nach (1) auch, dass die beiden Orbiten Gµ und Gλ benachbart
sind im folgenden Sinne: Es gibt keinen Orbit außer Gλ, dessen Abschluss Gλ
enthält aber nicht Gµ.
Wir untersuchen also die Singularität, die in Gλ ∪Gµ ⊂ Gµ auftritt, als Annäherung
an Gµ. Diese nennen wir minimale Degeneration.
Dazu definieren wir einen transversalen Schnitt

L<0G · Lλ ∩ Gµ (2)

Dabei ist L<0G eine Untergruppe von G(k[z−1]), siehe 2.8, und Lλ ein Punkt
von GG, siehe 2.11.
Das Schema L<0G · Lλ ∩ Gµ schneidet Gλ nur im Punkt Lλ und hat keinen
Schnitt mit Gλ′ für λ′ � λ, siehe Lemma 5.14.
Der Punkt Lλ ist dann eine isolierte Singularität von L<0G ·Lλ∩Gµ und es gilt,
dass Gµ ∪ Gλ glatt äquivalent zu L<0G · Lλ ∩ Gµ ist (siehe 6.8).

In [Stembridge, 1998] wird eine Charakterisierung aller minimalen Degenera-
tionen von Kogewichten gegeben, siehe Theorem 10.1. Diese umfasst vier Fälle.
In zwei dieser Fälle ist es möglich die Singularität in (2) konkret zu berechnen.
Wir kommen zu folgendem Resultat:
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Theorem 1.1
Sei (λ, µ) eine minimale Degeneration von Kogewichten.

(a) Ist µ− λ eine einfache Kowurzel von G, so gilt

(L<0G · Lλ) ∩ Gµ ∼= Spec k[T1, T2, T3]/(Tλi+2
1 − T2T3)

(b) Ist Iλ,µ = Jλ,µ und µ− λ = ᾱλ,µ, so gilt

(L<0G · Lλ) ∩ Gµ
∼=−→ Cmin(λ, µ)

Siehe Abschnitt 10 für die hier verwendete Notation.
Das bedeutet, dass im ersten Fall die Singularität eine Kleinsche Singularität
von Typ A ist. Im zweiten Fall ist die Singularität der Abschluss der minimalen
nilpotenten Konjugationsklasse Cmin in LieM , wobei M eine Leviuntergruppe
von G ist. Diese beiden Arten von Singularitäten nennen wir im Weiteren mini-
male Singularitäten.
Mit diesen Fällen sind alle minimalen Degenerationen von Gruppen erfasst, in
denen das Dynkin-Diagramm keine mehrfachen Kanten enthält, insbesondere
also Gruppen vom Typ A, D und E. Weiterhin stellen wir fest, dass auch
die minimalen Degenerationen im Fall Sp2g damit vollständig behandelt werden
(siehe 10.4).

In den beiden anderen Fällen von Theorem 10.1 können auch Singularitäten
minimaler Degenerationen auftreten, die keine minimalen Singularitäten sind.
Diese heißen quasi-minimale Singularitäten und treten in Gruppen auf, deren
Dynkin-Diagramme ein Subdiagramm vom Typ C oder G2 enthalten. In Ab-
schnitt 11 berechnen wir eine Singulatität diesen Typs im Falle der GSp4.

Der Beweis des Theorems 1.1 hat zwei wesentliche Bestandteile: Zum einen
die Reduktion darauf, die affine Grassmannsche der Levi Untergruppe zu be-
trachten, die zur Teilmenge derjenigen positiven Kowurzeln gehört, die in µ−λ
vorkommen. Zum anderen die explizite Berechnung der Singularitäten im Fall
λ = 0 und im Fall G = PGL2.
Für λ = 0 wird ein G(k)-äquivarianter Isomorphismus konstruiert zwischen
einem abgeschlossenen Unterschema von GG, das den zu µ korrespondieren-
den Orbit enthält, und dem nilpotenten Kegel der Liealgebra. Dies macht den
Zusammenhang zwischen minimalen Degenerationen und Konjugationsklassen
deutlich.

In [Juteau, 2008] werden Zerlegungszahlen von perversen Garben auf Sin-
gularitäten von minimalen Degenerationen studiert. Diese werden benutzt, um
die Vermutung aus [Malkin et al., 2005] zu beweisen, die besagt, dass die quasi-
minimalen Singularitäten nicht glatt äquivalent zu minimalen Singularitäten
sind. Dies Zeigt, dass die obige Fallunterscheidung notwendig ist.
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Die Resultate für minimale Singularitäten ähneln dem folgenden Theorem
aus [Pappas and Rapoport, 2000, Theorem C] für den Fall G = GLn:

Theorem 1.2
Jede Schubertvarietät der affinen Grassmannschen der GLn ist glatt äquivalent
zum Abschluss einer nilpotenten Konjugationsklasse der GLr, für ein passendes
r. Insbesondere ist sie normal mit rationalen Singularitäten.

Genauer wird folgender Zusammenhang hergestellt: Sei λ = (λ1, . . . , λn),
λi ∈ Z ein dominantes Kogewicht der GLn. Falls λn < 0 setze λ′i = λi − λn,
sonst λ′i = λi. Dann gilt λ′1 ≥ · · · ≥ λ′n ≥ 0 und (λ′1, . . . , λ

′
n) ist eine Parti-

tion von r =
∑
i λ
′
i. Diese Partition entspricht dem Jordantyp einer nilpotenten

(r × r)-Matrix. Der Jordantyp bestimmt damit eine Konjugationsklasse Cλ in
glr (siehe auch [Kraft and Procesi, 1981]).
In [Pappas and Rapoport, 2000] wird gezeigt, dass Gλ glatt äquivalent zu Cλ ⊂ glr
ist.
Für den Fall, dass λ das minimale Kogewicht ≥ 0 ist, liefert dies einen alterna-
tiven Beweis von Theorem 8.3 für den Fall der GLn: Dann ist λ = (1, 0, . . . , 0,−1),
λ′ = (2, 1, . . . , 1, 0) und r = n. Außerdem entspricht die Partition (2, 1, . . . , 1, 0)
der minimalen (nicht-trivialen) Konjuationsklasse des nilpotenten Kegels in gln.

Alle Resultate der vorliegenden Arbeit sind bereits in [Malkin et al., 2005]
enthalten. Es werden Details eingefüllt und elementarere Beweise gegeben, falls
möglich. Außerdem stellen wir fest, dass die Bedingung char(k) = 0, die in
[Malkin et al., 2005] gestellt wird, nicht notwendig ist.
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1 Introduction

We consider the affine Grassmannian GG of a closed reductive subgroup G of
SLn, defined over an algebraically closed field k of arbitrary characteristic. GG
is an ind-representable k-space with k-valued points G(k((z)))/G(k[[z]]). The
construction of GG is described in detail in section 3 and section 4.
There is a natural G (k[[z]])-action on GG. Its orbits are parametrized by the
dominant co-weights λ ∈ Λ+

G of G. We denote the orbit corresponding to λ by
Gλ.
An (affine) Schubert-variety in GG is the closure Gλ ⊂ GG of a G(k[[z]])-orbit
Gλ.
It is known that

Gλ =
⋃̇

λ′∈Λ+
G

λ′≤λ

Gλ′ (1)

One finds that Gλ is singular. It is even true that the smooth locus of Gλ is only
Gλ (see [Malkin et al., 2005]).
In the following we will study a distinguished part of this singularity:
A pair (λ, µ) of dominant co-weights of G with λ ≤ µ is called a minimal
degeneration of co-weights, if λ and µ are neighbours in the order of dominant
coweights of G. In other words, if for all dominant co-weights ν of G with
λ ≤ ν ≤ µ we have either ν = λ or ν = µ. This means as a consequence of (1)
the orbits Gµ and Gλ are neighbouring in the following sense: There is no orbit
except Gλ, whose closure contains Gλ but not Gµ.
We study the singularity Gλ ∪ Gµ ⊂ Gµ as an approximation to Gµ. It is called
minimal degeneration.
To this end we define a transverse slice

L<0G · λ(z) ∩ Gµ (2)

Here L<0G is a subgroup of G(k[z−1]), see 2.8, and Lλ is a point of GG, see
2.11.
The scheme L<0G · λ(z) ∩ Gµ intersects Gλ only in the point Lλ and has no
intersection with Gλ′ for λ′ � λ, see Lemma 5.14.
Then the point Lλ is an isolated singularity of L<0G · λ(z) ∩ Gµ and Gλ ∪ Gµ is
smoothly equivalent to L<0G · λ(z) ∩ Gµ (see 6.8).

There is a characterization of all minimal degeneration of co-weights given
in [Stembridge, 1998], see Theorem 10.1. It contains four cases. In two of these
cases it is possible to calculate the singularity in (2) explicitly.
We obtain the following result:

Theorem 1.1
Let (λ, µ) be a minimal degeneration of co-weights.

(a) If µ− λ is a simple co-root of G, then

(L<0G · Lλ) ∩ Gµ ∼= Spec k[T1, T2, T3]/(Tλi+2
1 − T2T3)

(b) If Iλ,µ = Jλ,µ and µ− λ = ᾱλ,µ, then

(L<0G · Lλ) ∩ Gµ
∼=−→ Cmin(λ, µ)

5



See section 10 for the notation. This means in the first case the singularity
is a Kleinian singularity of type A. In the second case the singularity is the
closure of the minimal nilpotent conjugacy class Cmin in LieM , where M is a
Levi subgroup of G. We will call these two types of singularities minimal sin-
gularities.
These cases cover all simply laced groups, in particular all groups of type A, D,
and E. Furthermore we observe that this also deals with all minimal degenera-
tions in the case Sp2g (see 10.4).

In the two other cases of Theorem 10.1 it is possible, that minimal degener-
ation singularities occur which are not minimal singularities. These are called
quasi-minimal singularities and occur in groups, whose Dynkin diagram con-
tains a subdiagram of type C or G2. We calculate a singularity of this type in
the case of GSp4 in section 11.

The proof of Theorem 1.1 result has two central ingredients. The first is
the reduction to studying the affine Grassmannian of the Levi subgroup that
corresponds to the subsets of simple roots appearing in µ − λ. The second is
the explicit calculation of singularities in the case of λ = 0 and in the case of
G = PGL2.
For λ = 0 we construct a G(k)-equivariant isomorphism of a closed subscheme
of GG containing the orbit corresponding to µ to the nilpotent cone in the Lie
algebra. This emphasizes the connection between minimal degenerations and
conjugacy classes.

In [Juteau, 2008] the decomposition numbers for perverse sheaves on mini-
mal degeneration singularities are studied. Using these decomposition numbers
it is shown that the quasi-minimal singularities are not smoothly equivalent to
minimal singularities, as was conjectured in [Malkin et al., 2005]. This shows
that the distinction above is necessary.

The results on minimal singularities are similar to a theorem that can be
found in [Pappas and Rapoport, 2000, Theorem C] for the case G = GLn:

Theorem 1.2
Any Schubert variety of affine Grassmannian of GLn is smoothly equivalent to
the closure of a nilpotent conjugacy class for GLr for suitable r. In particular,
it is normal with rational singularities.

More precisely the following connection is established: Let λ = (λ1, . . . , λn),
λi ∈ Z be a dominant co-weight of GLn. If λn < 0, define λ′i = λi − λn,
else λ′i = λi. Then λ′1 ≥ · · · ≥ λ′n ≥ 0 and (λ′1, · · · , λ′n) is a partition of
r =

∑
i λ
′
i. This partition corresponds to the Jordan type of a nilpotent (r× r)-

matrix. This Jordan type determines a conjugacy class Cλ in glr (see also
[Kraft and Procesi, 1981]).
In [Pappas and Rapoport, 2006] it is shown that Gλ is smoothly equivalent to
Cλ ⊂ glr.
In the case that λ is the minimal co-weight ≥ 0, this provides another proof of
Theorem 8.3 in the case of GLn: Then λ = (1, 0, . . . , 0,−1), λ′ = (2, 1, . . . , 1, 0)
and r = n. Furthermore the partition (2, 1, . . . , 1, 0) corresponds to the minimal
(non-trivial) conjugacy class in the nilpotent cone of gln.
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All results in the paper at hand can already be found in [Malkin et al., 2005].
However we fill in more details and give more elementary proofs where possible.
We also show that it is not necessary to ask for char(k) = 0, as was done in
[Malkin et al., 2005].

2 Basic notions

First we will fix notations and recall facts about the affine Grassmannian. For
more details we refer to [Beauville and Laszlo, 1994].

Let k be an algebraically closed field of any characteristic and let G be a closed
subgroup of SLn defined over k. By R we denote throughout the text an arbi-
trary k-algebra. By “scheme” we always mean k-scheme and all morphisms are
morphisms over k.

2.1 k-spaces
A priori we work in the category of algebraic k-spaces, meaning functors X from
the category of schemes over k to the category of sets that are a sheaf for the
fpqc topology.
This is the same as functors from the category of k-algebras to the category of
sets such that for any faithfully flat morphism of k-algebras R→ R′ the induced
diagram

X(R)→ X(R′) ⇒ X(R′ ⊗R R′)

is exact (where the double arrow is induced by the two inclusions of R′ into the
tensor product).
A k-group is a group object in the category of k-spaces.

2.2 Ind-schemes
In the category of k-spaces arbitrary inductive limits exist. Details can be found
in [Artin, 1962].
Recall that an ind-scheme (over k) is a k-space which is the inductive limit
in the category of k-spaces of a system of schemes. A functor is called ind-
representable if it is representable by an ind-scheme.
An ind-scheme X is called reduced resp. irreducible resp. integral if it is the
inductive limit of a family Xi of schemes, that are reduced resp. irreducible
resp. integral. This does not imply that every family Xi with lim−→i

Xi = X is
of this type, as one can easily add non-reduced schemes to a system without
changing the limit.
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2.3 Inductive limits on noetherian Grothendieck-topologies
One can restrict a sheaf on the fpqc-topology to the full subcategory of qua-
sicompact schemes over k. The fpqc-topology restricted to this category is
noetherian, meaning every cover can be replaced by a finite subcover (this is
obvious).
It is known that on a noetherian Grothendieck-topology that given an inductive
system Xi of sheaves, the presheaf U 7→ lim−→ (Xi(U)) is again a sheaf (and of
course the inductive limit in the sense of sheaves). Moreover the functor lim−→ is
exact (see for example [Artin, 1962, Section 5]).

Lemma 2.4
Let X be a quasi-compact scheme and Y = lim−→i

Zi be an ind-scheme, rep-
resented by the inductive limit of the schemes Zi. Then for every morphism
f : X → Y there is a i such that f factors through Zi.

Proof. Y (X) = lim−→i
(Zi(X)) by 2.3. But this means that every morphism

R→ Y factors through one of the Zi by definition of the limit.

2.5
Lemma 2.4 is not a consequence of the universal property of the inductive limit.
Recall that the universal property is: giving a morphism from Y = lim−→i

Zi into
a k-space X is the same as giving a compatible system of morphisms Zi → X
for all i, whereas Lemma 2.4 talks about morphisms into Y .

2.6 Closed and open immersions of k-spaces
A morphism of k-spaces X → Y is called representable if for every k-scheme S
and every morphism S → Y the k-space X ×Y S is representable.
A morphism X → Y of k-spaces is called a closed immersion if it is representable
and for every k-scheme S and every morphism S → Y the projection X ×Y
S → S is a closed immersion. We define the properties open immersion and
immersion analogously. With this notions it makes sense to talk of open or
closed sub-k-spaces of a given k-space.
It follows from the definition, that these properties are local on Y .

2.7 Closed and open immersions of ind-schemes
Let f : X → Y be a representable morphism of k-spaces with Y = lim−→i

Zi
an ind-scheme. Then f is a closed immersion if and only if the basechange
fZi : X ×Y Zi → Zi is a closed immersion for each i.
One direction is obvious. Assume fZi is a closed immersion for each i.
One can test whether f is a closed immersion using only affine test-schemes,
i.e. f is a closed immersion if the definition is fulfilled for all affine S: Cover
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an arbitrary S by open affine subschemes Uj . If each X ×Y Uj is representable
by a scheme they can be glued together, giving a scheme representing X ×Y S.
Testing whether the projection X ×Y S → S is a closed immersion of schemes
is local on S anyway.
But now the assertion follows from Lemma 2.4: If S is affine then S → Y factors
as S → Zi and X ×Y S ∼= X ×Zi S.
The same statement holds for open immersions.
This gives a more intuitive view of sub-ind-schemes. They are open or closed if
and only if their intersection with all “finite parts” Zi is open or closed.

2.8 The loop group
Define

• L≥0G be the k-group R 7→ G(R[[z]]), called the positive loop group.

• LG be the k-group R 7→ G(R((z))), called the loop group.

• L<0G be the k-group R 7→ ker
(
G(R[z−1]) z−1 7→0−−−−→ G(R)

)
, the kernel of

the reduction map.

• GG be the k-space LG/L≥0G, where the quotient is taken as fpqc-sheaves.
This means it is the fpqc-sheaf associated to the functorR 7→ G(R((z)))/G(R[[z]]).
It is called the affine Grassmannian for G.

It is known that in fact all of these objects are actually (ind-)representable. Even
more, they are representable as inductive limits of schemes where all transition
maps are closed immersions. This special case is called strict ind-scheme.

Lemma 2.9
L≥0G is representable by an affine k-scheme.
LG and L<0G are ind-representable as limits of affine k-schemes.

Proof. We recall the construction from [Beauville and Laszlo, 1994].
Let Mn be the k-scheme with R-valued points the (n × n) matrices over R.
Let M(N)

n = Πi≥−N Mn. Then M(N)
n represents the functor that associates to a

k-algebra R the set of all matrices of the form
∑
i≥−N Ai · zi with Ai ∈ Mn(R).

Let LG(N)(R) be the set of all matrices A ∈ LG(R) with indeterminate z such
that both A and A−1 have poles of order ≤ N . This defines a subfunctor of LG.
It is represented by a closed affine subscheme of M(N)

n :
Since SLn is closed in Mn and G is closed in SLn, G is a closed subscheme
of Mn, defined by a finite set of polynomials fi ∈ k[a11, . . . , ann]. For N ∈ N
one can find polynomials P (N)

i,j ∈ k[a(m)
ij ; i, j = 1, . . . , n, m ≥ N ] such that for

A ∈ M(N)
n (R) with A =

∑
j≥−N Aj · zj and Aj ∈ Mn(R) we have

fi(A) =
∑
j≥−N

P
(N)
i,j ((Am)m≥−N ) · zj
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It is clear that LG(N) is represented by the closed subscheme of M(N)
n defined

by the vanishing of the P (N)
i,j . Then L≥0G = LG(0) and LG = lim−→

N

LG(N).

To see that L<0G is ind-representable consider forN ∈ N the k-scheme
∏N
j=1 Mn.

It represents the functor

R 7→ {A ∈ Mn(R((z))) | A = 1n +
N∑
j=1

Aj · z−j , Aj ∈ Mn(R)}

(where 1n is the n× n identity matrix).
Since each entry of these A is a polynomial in z−1 we can define the subfunctor
L<0
≥−NG of

∏N
j=1 Mn by the vanishing of the polynomials

fi(1n +
N∑
j=1

Ajz
−j).

It is obvious that L<0G = lim−→
N∈N

L<0
≥−NG.

Define G
(N)
G to be the image of LG(N) in the quotient GG = LG/L≥0G.

Then GG = lim−→
N

G
(N)
G . Our first aim is to prove that the G

(N)
G are representable.

Then it is clear that the directed system is given by closed immersions.

2.10 Notations
Let G be reductive and connected. This assumption will not be used until
section 5 and is not needed for GG to be representable. But we will use the
following notation for SLn, so we introduce it now.
Inside SLn we have the standard torus and Borel subgroup. Every Borel sub-
group B of G is of the form B = (B′∩G)◦, where B′ is a Borel subgroup of SLn
and (·)◦ denotes the connected component of the unity. By conjugating SLn we
can assume B′ to be the standard Borel. This changes the embedding of G in
SLn, which means that in the case of classical groups we may not end up with
the natural embedding. But we only do explicit calculations in the cases of Sp2g

and PGL2 and there is no problem in this case.
This means we have T ⊂ B ⊂ G, a torus and Borel subgroup of G, lying inside
the standard torus and Borel subgroup of SLn.
Let IG be the set of vertices in the Dynkin diagram associated to G. Let α̌i,
i ∈ IG be the simple co-roots and QG the co-root lattice. Let ω̌i, i ∈ IG be
the fundamental co-weights, ΛG the co-weight lattice and Λ+

G the dominant co-
weights.
By construction the co-weight lattice of G is contained in the co-weight lattice
of SLn and Λ+

G ⊂ Λ+
SLn

.
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2.11 The point of GG assiociated to λ ∈ ΛG
One can also view ΛG as a subgroup of T (k((z))) by sending λ to λ(z). Denote
the image of λ(z) ∈ T (k((z))) in GG by Lλ. The assignment λ 7→ Lλ is a
bijection. This can be seen choosing an isomorphism T ∼= Grm. Then

ΛG = Hom(Gm, T ) = Hom(Gm,Grm)

= (k((z))/k[[z]])r = (LT /L≥0 T)(k)
(3)

In the case of SLn with the standard torus the statement above can be
reformulated in the following way: Given λ ∈ Λ+

G, λ = (λ1, λ2, . . . , λm) we write
zλ for diag(zλ1 , . . . , zλn) = λ(z) as a point of LG(k)

Since we chose the torus T to be contained in the diagonal matrices in SLn,
λ(z) is of course a diagonal matrix where all entries are monomials in z. But
since λ(z) depends on the embedding of G into SLn we use the more suggestive
notation zλ only when it is clear which embedding we refer to.

3 The affine Grassmannian for SLn

In this section we recall the proof of [Beauville and Laszlo, 1994], showing that
GSLn is ind-representable. Let L0 be the R[[z]]-module R[[z]]n. Recall the follow-
ing concept:

3.1 Lattices in R((z))n

A lattice in R((z))n is a R[[z]]-submodule L of R((z))n that is projective and of
rank n such that

L⊗R[[z]] R((z)) = R((z))n.

A lattice L in R((z))n is called special if
∧n

L = R[[z]] as a R[[z]]-submodule of
R((z)) ∼=

∧n
R((z))n.

3.2
We will need the following fact from commutative algebra:
Let Ri, i ∈ N be an inverse system of rings with surjective connection maps
Ri � Ri−1 and limit R̂. Let M be a finitely generated R̂-submodule of (R̂)n. If
all Mi := M⊗R̂Ri are projective Ri-modules, then M is a projective R̂-module.
The proof is straightforward.

Lemma 3.3
Let L ⊂ R((z))n be a finitely generated R[[z]]-module. Then the following are
equivalent:

(a) L⊗R[[z]] R((z)) = R((z))n
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(b) there is a N ∈ N such that zNL0 ⊂ L ⊂ z−NL0

Proof. Observe that L⊗R[[z]] R((z)) =
⋃
i∈N z

−i · L.
Let L satisfy a). Since it is a finitely generated R-module, there is N ∈ N such
that zNL ⊂ L0.
Because of

⋃
i∈N z

−i · L = R((z))n there is i ∈ N such that z−iL contains the
standard basis of R((z))n, showing z−iL ⊃ L0.
The other implication is obvious.

Lemma 3.4
Let L satisfy the conditions of Lemma 3.3 and fix N ∈ N with

zNL0 ⊂ L ⊂ z−NL0

The following are equivalent:

(a) There is i ∈ N, i ≥ 2N such that L/ziL is a projective R-module.

(b) z−NL0/L is a projective R-module.

(c) z−NL0/L and L/zNL0 are projective R-modules.

(d) L/ziL is a projective R-module for every i ∈ N.

Proof.

a)⇒ b) There is an exact sequence of R-modules

0→ zNL0/z
iL→ L/ziL→ L/zNL0 → 0

The natural projection of R-modules z−NL0/z
iL � zNL0/z

iL induces
a retraction L/ziL � zNL0/z

iL. Therefore the sequence splits and
z−NL0/L is projective.

b)⇒ c) Assume b). Then the exact sequence

0→ L/zNL0 → z−NL0/z
NL0 → z−NL0/L→ 0

splits, showing c) since the middle term is free.

c)⇒ d) First let i = 2N .
If z−NL0/L and L/zNL0 are projective, then the exact sequence

0→ zNL0/z
iL→ L/ziL→ L/zNL0 → 0

splits (as in “a)⇒ b)” ) and we conclude L/z2NL is projective over R.

Using c) the exact sequence

0→ L/zN+1L0 → z−NL0/z
N+1L0 → z−NL0/L→ 0
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splits. Since z−NL0/z
N+1L0 is free, L/zN+1L0 is projective, too. Conse-

quently

0→ zN+1L0/z
2N+1L→ L/z2N+1L→ L/zN+1L0 → 0

splits. As zN+1L0/z
2N+1L ∼= z−NL0/L is projective by assumption, the

middle term L/z2N+1L is projective, too. This is the case i = 2N + 1.
Now with the argument of “a)⇒ b)” applied to the exact sequence

0→ zNL0/z
2N+1L→ L/z2N+1L→ L/zNL0 → 0

we find that zNL0/z
2N+1L ∼= z−N−1L0/L is projective. This is b) for

N + 1. Obviously zN+1L0 ⊂ L ⊂ z−N−1L0. Hence we can use induction
on N to conclude d) for all i ≥ 2N .

For i < 2N the assertion follows from the exact sequence

0→ ziL/z2N+iL→ L/z2N+iL→ L/ziL→ 0

since the middle and left term are projective.

d)⇒ a) is obvious.

Lemma 3.5
Let L ⊂ R((z))n be a finitely generated R[[z]]-module satisfying the conditions
in Lemma 3.3. Then the following are equivalent:

(a) L is a projective R[[z]]-module.

(b) L is locally onR a freeR[[z]]-module. By this we mean there are a1, . . . , ar ∈
R generating the unit ideal in R such that

L⊗R[[z]] Rai [[z]]

is a free Rai [[z]]-module.

(c) z−NL0/L is a projective R-module.

Proof.

a)⇒ b) If L is a projective R[[z]]-module then there exist f1, . . . , fr ∈ R[[z]] gen-
erating the unit ideal in R[[z]] such that L ⊗R[[z]] R[[z]]fi is free for all i.
Let ai be the coefficient of fi in degree 0. Then a1, . . . , ar generate the
unit ideal in R. Also R[[z]]→ R[[z]]fi factors through Rai [[z]]. This means
L⊗R[[z]] Rai [[z]] = L⊗R[[z]] R[[z]]fi ⊗R[[z]]fi

Rai [[z]] is free.

b)⇒ c) We claim that c) is local on R. In other words if a1, . . . , ar ∈ R generate
the unit ideal in R and z−NRnai/

(
L⊗R[[z]] Rai [[z]]

)
is a projective
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Rai-module, then z−NL0/L is a projective R-module.
Indeed, consider the commutative diagram(

L/zNL0

)
⊗R Rai

� � //

ϕ′

��

(
z−NL0/z

NL0

)
⊗R Rai // //

ϕ

��

(
z−NL0/L

)
⊗R Rai

ϕ′′

��(
L⊗R[[z]] Rai [[z]]

)
/zNRai [[z]]

n � � // z−NRai [[z]]
n/zNRai [[z]] // // z−NRai [[z]]

n/
(
L⊗R[[z]] Rai [[z]]

)
with exact rows.
Here ϕ is obviously an isomorphism. But so is ϕ′ since

L/zNL0 = L⊗R[[z]] R[z]/zN

By the 5-lemma, ϕ′′ is an isomorphism. This proves the claim.
Using the claim we may assume that L is a free R[[z]] module. But then
L/z2NL is a free R-module, in particular projective. Using Lemma 3.4 we
conclude c).

c)⇒ a) By Lemma 3.4 L/ziL is projective over R for all i ∈ N. In particular
L/zL is projective over R. Inductively we can split L/zjL for j ∈ N into
a direct sum

L/zjL ∼=
j⊕
i=1

(L/zL)

This isomorphism ofR-modules is even an isomorphism ofR[z]/zj-modules
if the z-action on the right is defined by shifting to the next summand.
Choose an epimorphism E → L with E a free R[[z]]-module and decompose

E/znE =
j⊕
i=1

(E/zE)

The natural R[z]/zj-epimorphism
⊕j

i=1(G/zG) →
⊕j

i=1(L/zL) has a
splitting, induced by the R-linear splitting on every summand. This proves
L/zjL is projective over R[z]/zj . Using 3.2 we find that L is projective
over R[[z]].

Lemma 3.6
Fix N ∈ N. The functor QN associating to a k-algebra R the set of special
lattices L in R((z))n such that

zNL0 ⊂ L ⊂ z−NL0

is representable.

14



Proof. We repeat the construction of [Beauville and Laszlo, 1994]:

Let Grassz(nN, 2nN) be the Grassmannian parametrizing z-stable subspaces
of a free module FN of rank n over k[z]/(z2N ) (FN has dimension 2nN as a
vectorspace over k).

Then we claim thatQN is represented by a closed subscheme of Grassz(nN, 2nN)
with the same underlying topological space.
This correspondence is obtained by sending a lattice L ∈ QN (R) to its image
L̄ = L/(zr ·R[[z]]n) in the quotient

(z−r ·R[[z]]n)/(zr ·R[[z]]n) ∼= FN ⊗k R.

If R is a field, then L is special if and only if L̄ has dimension nN : by the
elementary divisor theorem there is a R[[z]]-basis e1, . . . , er of R[[z]]n such that
the R[[z]]-module L has a basis of the form (zd1e1, . . . , z

drer) with −N ≤ di ≤ N .
Both conditions are then equivalent to

∑
di = 0.

For general R there is an exact sequence

0→ L̄→ F → F/L̄→ 0

of R-modules. It splits since F/L̄ is projective by Lemma 3.5. This means L̄ is
a direct summand of F . Given any morphism R → K into a field K we know
dimK

(
K ⊗R L̄

)
= nN . Hence L̄ is of rank nN .

Conversely, let rank L̄ = nN . Then locally over Spec(R) one has
∧r

L̄ = z−rN ·
x · R[[z]] for suitable x ∈ R[[z]], since L ⊂ z−NR[[z]]n. By the case over a field
we know that for each homomorphism R → K into a field, the image of x in
K[[z]] is of the form znNu where u is a unit of K[[z]], since K ⊗R L̄ is special.
Therefore the coefficients of z0, . . . , znN−1 in x have to be nilpotent whereas
the coefficient of znN is a unit. Let IL be the nilpotent ideal generated by the
coefficients of z0, . . . , znN−1 in x.
Given an arbitrary ring homomorphism u : R→ R′, the lattice

R′ ⊗R L ⊂ R′((z))

is special if and only if u(IL) = 0. This means the functor associating to R
the set of direct z-stable sub-R-modules of R ⊗k FN of rank nN , such that
the corresponding lattice is special is represented by a closed subscheme of
Grassz(nN, 2nN), defined by a nilpotent ideal.
We constructed an isomorphism of functors between this functor and QN .

3.7 A basis of FN
There is a basis of FN given by the images of zj · ek, where k = 1, . . . , n,
j = −N, . . . , N − 1 . Write b2N(j+N)+k := zj · ek, ordering the basis is first by
the z-power j, then by the index k. This is a useful notation for writing down
matrices.
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3.8 The lattice functor is ind-representable
As a consequence of 3.6 we know that the functor associating to R the set of
special lattices in R((z))n is ind-representable, since it is the inductive limit of
the QN (using Lemma 3.3). In particular, it is a k-space.

Lemma 3.9
GSLn is the functor associating to R the set of special lattices in R((z))n and
G

(N)
SLn

its subfunctor QN . In particular, GSLn is ind-representable.

Proof. Observe that the functor R 7→ SLn(R((z)))/ SLn(R[[z]]) parametrizes free
R[[z]]-submodules W of R((z))n of rank n such that zNL0 ⊂ W ⊂ z−NL0 for
suitable N ∈ N and

∧n
W = R[[z]].

Indeed, let ḡ ∈ SLn(R((z)))/ SLn(R[[z]]) and let g ∈ SLn(R((z))) be a represen-
tative of ḡ. Let W be the R[[z]]-submodule of R((z))n generated by the columns
of g. W is obviously independent of the choice of g. Since g is invertible, W is
a free R[[z]]-module of rank n. Hence there exists N ∈ N with zN ·W ⊂ R[[z]]n.
Let N ′ be the maximal z−1-power in g−1. Then z−N

′ ·W ⊃ R[[z]]n. It is obvious
that

∧n
W = R[[z]], since det(g) = 1.

Using Lemma 3.5 we know that Zariski-locally on R, every lattice is a free
R[[z]]-module. Being special and the condition

zNL0 ⊂W ⊂ z−NL0

are obviously stable under tensoring. This means for every lattice L in R((z))n

there is a faithfully flat morphism R → R′ such that L ⊗R R′ is a free R′[[z]]-
module of the type parametrized by SLn(R′((z)))/ SLn(R′[[z]]). As we know that
the lattice functor is a fpqc-sheaf, this means it is the fpqc-sheafification of the
functor R 7→ SLn(R((z)))/SLn(R[[z]]).
The statement about G

(N)
SLn

follows immediately.

3.10 GG is not reduced in general
Consider GGL1 . Dropping the specialty condition in Lemma 3.9 one can show
that GGLn represents the functor R 7→ { lattices in R((z))n}. Since every lat-
tice in k((z)) is free, we have GGL1(k) = GL(k((z)))/GL(k[[z]]) by the proof of
Lemma 3.9. But GL(k((z)))/GL(k[[z]]) is just countable many points, given by
the representatives zi, i ∈ Z and therefore

GGL1 red =
∐
Z

Spec k.

If GGL1 was reduced, every k[ε]/ε2-valued point would factor over one of the
copies of Spec k. But there are more points in GGL1(k[ε]/ε2), for example the
one given by ε+ z. Hence GG is not reduced in general, even if G is.
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Now we take a closer look at the structure of GSLn :

Lemma 3.11 ([Faltings, 2003, Lemma 2])
The action of L<0SL on the element L0 of GSLn corresponding to the standard
lattice k[[z]]n defines an isomorphism that is given on the R-valued points as

L<0SL(R)
∼=−→ {L ∈ GSLn | L⊕R z−1R[z−1]n = R((z))n}

Proof. We reproduce the proof.
Since the elements of L<0SL are of the form 1n + z−1M with M ∈ Mn(R[z−1])
it is clear that for h ∈ L<0G the lattice h ·R[[z]]n satisfies the equation

h ·R[[z]]n ⊕R z−1R[z−1]n = R((z))n.

Let L⊕ z−1R[z−1]n = R((z))n. We claim that there is a unique h ∈ Mn(R((z)))
of the above form such that all columns of h are in L. In what follows all vectors
are column vectors and the transpose of a vector v is denoted by vt.
Let ei, i = 1, . . . , n be the standard basis of R((z))n. By assumption there are
unique vi ∈ L and wi ∈ z−1R[z−1]n such that vi + wi = ei.
Let h = 1n −

∑n
i=1 e

t
i ·wi. Then h · ei = ei −wi = vi ∈ L and the uniqueness is

evident.
Now we claim that L = h ·R[[z]]n, i.e. the columns vi of h generate L.
Let r � 0 such that zr · h ∈ MN (R[z]) and zr · R[[z]]n ⊂ z · L. To show the
claim it suffices to prove that the images v̄i of the vi generate L/(zr ·R[[z]]n) as
an R[[z]]-module:
Let x ∈ L. If the v̄i generate L/(zr · R[[z]]n) we can write x =

∑n
i=1 xivi + y0

with xi ∈ R[[z]] and y0 ∈ zr ·R[[z]]n.
This means there is y0 ∈ zr ·R[[z]]n ⊂ z · L with

x ≡ y0 mod SpanR[[z]](v1, . . . , vn).

Iterating the process (with y0 as x) we get yk ∈ zk · L with

x ≡ yk mod SpanR[[z]](v1, . . . , vn)

for all k ∈ N. This means the sequence yk converges to 0 and therefore

L = SpanR[[z]](v1, . . . , vn).

Now we show that the v̄i generate L/(zr · R[[z]]n) as an R[[z]]-module. Let
x̄ ∈ L/(zr ·R[[z]]n) and let

pr : L ⊂ R((z))n = R[[z]]n ⊕R z−1R[z−1]n → R[[z]]n

be the first projection.
There is a x ∈ L representing x̄ such that pr(x) is a linear combination of zj · ei
with j ≤ r. The projection pr(h · zjei) is of the form “zjei+ lower z-terms”
because of the form of h.
In particular pr(h · ei) = ei. By induction

pr(h · zjei) ≡ zjei mod SpanR[[z]](he1, . . . hen).

And therefore

zjei ∈ SpanR[[z]](he1, . . . hen) = SpanR[[z]](v1, . . . , vn).
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This means pr(x) ∈ SpanR[[z]](v1, . . . , vn) ⊂ L. But

x− pr(x) ∈
(
L ∩ z−1R[z−1]n

)
= (0)

so x = pr(x) ∈ SpanR[[z]](v1, . . . , vn). This proves the claim.
To see that h is actually an element of L<0G(R), we observe that L and R[[z]]n

have the same R[[z]]-determinant (L is special). Therefore the determinant of h
is a unit in R[[z]], in particular it contains no negative z-powers and thus it is
1.

3.12 A cover of the Grassmannian
We recall some standard facts about the Grassmannian Grass(r, s) parametriz-
ing rank r submodules of a free module of rank s: There is an open cover of
Grass(r, s) given on the k-valued points as

UJ = {V ⊂ ks | V ⊕ Span(fj ; j /∈ J) = ks}

where J is a subset of {1, . . . , s} with r elements and fj is a basis of ks.
This can be reformulated using another description of Grass(r, s): The k-valued
point of the Grassmannian are given by M(s,r)(k)/GLr(k), where M(s,r)(k) is
the set of (s×r)-matrices with rank r and entries in k and the operation is given
by matrix multiplication. The correspondence is given by sending a matrix to
the subspace of ks generated by the columns of the matrix. This is well-defined
on a co-set since the right action by GLr(k) changes the columns only by in-
vertible linear combination.
Then a subspace V is in UJ if and only if in a matrix representation of V in the
above sense the submatrix consisting of the columns whose index is in J is in-
vertible. This condition is independent of the representative we choose since it is
stable under the GLr(k)-action. With this description we see that UJ ∼= Ar(s−r)
by choosing the representative where the submatrix consisting of the columns
whose index is in J is the identity matrix 1r.

3.13
Lemma 3.11 motivates the following definition:
Let λ ∈ Λ+

SLn
, λ = (λ1, . . . , λn). Then Lλ (defined in 2.11) is generated by

the columns of the diagonal matrix zλ. This means (zλ1e1, . . . , z
λnen) is a set

of generators of Lλ as a k[[z]]-module. For N ≥ |λi|, i = 1, . . . , n we have
Lλ ∈ G

(N)
SLn

.
Using the construction in the proof of Lemma 3.6 we interpret Lλ as a point of
Grassz(nN, 2nN). Then the image in Grassz(nN, 2nN) (which we also denote
by Lλ) is a k-vectorspace with basis zjei, j ≥ λi.
Let L−λ be the k-vectorspace with basis zjei, i = 1, . . . , n with j < λi. Then we
have Lλ ⊕ L−λ = k((z))n.

18



On R-valued points we define πλ : R((z))n = Lλ ⊕ L−λ → Lλ to be the first
projection. Then we define Uλ to be

Uλ := {L ∈ GSLn | the projection πλ|L : L→ Lλ is an isomorphism }.

For the case λ = 0 this is just the L<0SL-orbit of R[[z]]n by Lemma 3.11. Let
U (N)
λ := Uλ ∩ G

(N)
SLn

.

Then U (N)
λ is one of the open subsets of the cover of G

(N)
SLn

induced by the cover
of the Grassmannian described in 3.12:
U (N)
λ
∼= UJ ∩Grassz(nN, 2nN) where J = {j ∈ {1, . . . , n} | bj ∈ Lλ} and bj as

in 3.7. Let Uλ := UJ , in particular

U0 = {V ⊂ k2nN | V ⊕ Span(zkei; i = 1, . . . , n, k = −1, . . . ,−N) = k2nN}.

This means that the Uλ are open in GSLn . It is easy to see that Uλ is stable
under the action of L<0SL. Therefore U (N)

λ contains L<0SL ·zλ ∩ G
(N)
SLn

, a fact
which we will need later.

By Lemma 3.11 we obtain for the case λ = 0:

Lemma 3.14
L<0SL ·L0 is an open orbit of the L<0SL-action on GSLn

L<0SL ·L0 ∩ G
(N)
SLn

= U (N)
0

∼=−→ U0 ∩Grassz(nN, 2nN)

where U0 as above.

3.15 The open cell in GG
L<0SL ·L0 is called the open cell of GSLn .
For arbitrary λ the statement of Lemma 3.14 is no longer true. In general
L<0G · Lλ is locally closed in GG (Lemma 6.7). In fact we will see that it is
closed in Uλ (this follows from Lemma 5.13, a) ).

4 The affine Grassmannian for general G

Let G be a closed reductive subgroup of SLn.

4.1
By Lemma 3.11 and using the transitive LSL-action on GSLn we can see that
GSLn has an open cover of k-spaces isomorphic to L<0SL, with isomorphisms
given by the L<0SL-action on GSLn . This means the quotient map LSL→ GSLn

is locally a trivial fibration with fibre L≥0SL. We want to extend this result to
GG.
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Lemma 4.2 ([Faltings, 2003, Corollary 3])
The multiplication morphism m : L<0G× L≥0G→ LG is an open immersion.

Proof. We recall the proof:
One can find a representation % : SLn → GLd (defined over k) such that G is
the stabilizer of an element e ∈ Pdk (this is always possible, see [Springer, 1998,
Chapter 5.5]).
The lemma is true for G = SLn by 4.1.
Thus we only need to prove that the image of L<0G×L≥0G in LG is the image
of

m : L<0SL×L≥0SL→ LSL

intersected with LG. In other words we have to show that if g = g− ·g+ ∈ LG(R)
with g− ∈ L<0SL(R) and g+ ∈ L≥0SL(R) then g− and g+ are already in LG(R).
But

%(g−) · %(g+) · e = %(g) · e = e

and thus
%(g−1
− ) · e = %(g+) · e ∈ R((z))h.

But then %(g−1
− ) · e = %(g+) · e lies in Pdk(R[[z]]), since g+ ∈ L≥0SL(R). It also

lies in Pdk(R[z−1]) such that its image under Pdk(R[z−1])→ Pdk(R), z−1 7→ 0 is e
since g− ∈ L<0SL. Hence %(g−1

− ) · e = %(g+) · e = e.

4.3
Define U0,G := U0 ∩ GG and U (N)

0,G := U (N)
0 ∩ GG. It is obvious that U0,G and

its LG-translates are an open cover of GG. Using the above lemma we get an
open cover of LG such that each open set is isomorphic to L<0G × L≥0G via
m. This means that the quotient map LG → GG is locally the first projection
of the product L<0G× L≥0G, i.e. a trivial fibration. In particular:

L<0G
∼=−→ U0,G

g 7→ g · L0

Theorem 4.4
The map f : GG → GSLn is a closed immersion of k-spaces. In particular GG is
an ind-scheme.

Proof. The question is local on GSLn . Consider the open cover of GSLn con-
structed in 4.1. The embedding G ↪→ SLn induces the following diagram:

L<0G
� � f //

∼=
��

L<0SL

∼=
��

U0,G
f ′ // U0
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By construction f is a closed immersion (see Lemma 2.9) and since the vertical
morphisms are isomorphisms so is f ′.

We observe that for an open subset of LSL of the form g·L<0SL with g ∈ LSL
its preimage in LG is either empty or we can assume g ∈ LG and the preimage
is g · L<0G:
If g ·L<0SL∩LG 6= ∅ then it contains a k-point g′. Then g′ ·L<0SL = g ·L<0SL
and by assumption g′ ∈ LG.

Then multiplication by g induces automorphisms of LG, LSL, GSLn and GG
and we obtain

g · L<0G
� � f //

∼=
��

g · L<0SL

∼=
��

g · U0,G
f ′ // g · U0

With the same argument we get that f ′ is a closed embedding.

4.5
Let L>2NG(R) be the kernel of the map G(R[[z]]) → G(R[z]/(z2N )). Then
L>2NG is represented by an affine group scheme. We observe that L>2NG(R)
acts trivially on G

(N)
G (R). For LSL>N (R) this is clear by the lattice-description.

Now the assertion is a consequence of Lemma 4.4.
Thus the action of L≥0G on G

(N)
G factors through ΓN (R) := G

(
R[z]/(z2N )

)
.

ΓN is in an obvious way representable by a k-scheme of finite type.
An analogous statement can be made about L<0G ∩ LG(N). Its action factors
through Γ−N defined via Γ−N (R) := G

(
R[z−1]/(z−2N )

)
for the same reason (but

the map L<0G ∩ LG(N) → Γ−N is not surjective).

4.6
By Lemma 4.4 we have a closed immersion of the subfunctors G

(N)
G :

GG
� � //

S
GSLnS

G
(N)
G

� � // G (N)
SLn

Thus G
(N)
G is a scheme and GG is the union of the G

(N)
G . Composing with the

map from Lemma 3.6 we acquire a closed immersion

G
(N)
G ↪→ Grassz(2Nn,Nn)

which will be helpful in explicit calculations.
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5 The Structure of GG

From now on we assume G to be reductive and connected.

5.1 Affine Schubert varieties
An element λ ∈ Λ+

G corresponds to a point Lλ in GG as in 2.11.
The multiplication m : LG × LG → LG induces a transitive LG-action on GG.
Let Gλ = L≥0G · Lλ be the orbit of Lλ under the induced L≥0G-action. Let Gλ
be its closure in GG. We equip it with the reduced scheme structure. Since Gλ
is L≥0G-invariant it is the union of L≥0G-orbits.
Since Lλ ∈ G

(N)
G for N � 0 and since G

(N)
G is closed in GG and stable under the

L≥0G-action we see that Gλ ⊂ G
(N)
G is a projective scheme of finite type over k.

It is called (affine) Schubert variety for λ.

5.2 The partial order of co-weights
There is a partial order on ΛG given by λ ≤ µ if and only if λ − µ is a sum of
simple co-roots. This restricts to a partial order ≤ on the dominant co-weights
Λ+
G.

We recall some facts about this order. More details can be found for example
in [Humphreys, 1972].
There are only finitely many ≤-minimal elements in Λ+

G, as the lattice QG has
finite index in the lattice ΛG. These are 0, the fundamental co-weights that are
not co-roots and possibly positive sums of those.
Furthermore every dominant co-weight λ ∈ Λ+

G lies above a unique smallest
dominant co-weight λ0: Let λ ≥ λ0 and λ ≥ λ′0 with λ0 and λ′0 ≤-minimal. By
definition this means λ − λ0 and λ − λ′0 are positive sums of simple co-roots.
Therefore λ0−λ′0 is in the co-root lattice. But since both are ≤-minimal λ0−λ′0
is a co-root and therefore 0.
We claim that if the Dynkin diagram IG of G is connected then above each
smallest co-weight, there is a unique “second smallest” co-weight. Clearly the
order above each λk is isomorphic to the one above 0 by translation with λk.
Recall that if IG is connected, then there is a unique root that is maximal for
≤, called the highest root. It is the unique long root that is also a dominant
weight. The co-root to the highest root is short and a dominant co-weight (and
unique with these properties by the uniqueness of the highest root), call it λmin.
Then λmin is the unique ≤-minimal co-weight above 0. In the simply laced case
this is obvious, since λmin is the only root in Λ+

G. In the non-simply laced case,
there are two roots in Λ+

G, namely λmin and the highest co-root (meaning the
highest root for the dual root system). But the highest co-root is bigger than
λmin by definition.
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We cite the following well-known facts about the affine Grassmannian:

Lemma 5.3

(a) GG =
⋃̇
λ∈Λ+

G

Gλ

(b) Gλ ⊂ Gµ if and only if λ ≤ µ.

(c) dim Gλ = 〈2ρ, λ〉 where 2ρ is the sum of all positive roots.

Proof. See [Beauville and Laszlo, 1994] for the case of SLn. For the general
case:

(a) Follows from the Cartan decomposition of G(k((z))):

G(k((z))) =
·⋃

λ∈Λ+
G

G(k[[z]]) · λ(z) ·G(k[[z]])

This can be found in [Cartier, 1979, page 140].

(b) See for example [Rapoport, 2005, Notes added June 2003, 2)].

(c) This is proved in [Ngô and Polo, 2000, Lemme 2.2].

5.4 Connected components of GG
Let λ0 = 0, λ1, . . . , λr be the minimal dominant coweights as in 5.2. With

Yi :=
⋃
λ∈Λ+

G
λ≥λ0

Gλ

for i = 0, . . . , r we have
GG =

∐
i

Yi

This is an easy consequence of Lemma 5.3: Yi is closed by b). By a) each L≥0G-
orbit lies in exactly one Yi.
If G is semi-simple then L≥0G is connected [Laszlo and Sorger, 1997] and the
Yk are the connected components of GG but we will not need this.

Furthermore all Yk are isomorphic. The isomorphism of Y0 to Yi is given
by the action of λk(z). But of course the decomposition into L≥0G orbits is
different on each Yi since multiplication with λk(z) does not commute with the
action of L≥0G. For example the singularity acp of GPGL discussed in 10.3 and
in section 11 does not appear in Y0 (see 10.4).
If k = C it is shown in [Beauville et al., 1998] that Y0(k) = GG̃(k), where G̃ is
the universal covering of G. In 5.6 we will show this in the case of PGLn.
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5.5 Simply connected algebraic groups
We call π1(G) := ΛG/QG the algebraic fundamental group of G. It is known
(see [Fulton and Harris, 1999]) that if k = C, then the algebraic and the topo-
logical fundamental group of G coincide.
G is called simply connected if π1(G) = 1.
This is equivalent to all dominant coweights being ≥ 0. Consequently 0 is the
only minimal dominant co-weight and GG is connected.
More generally it is shown in [Pappas and Rapoport, 2006, 5.3] that π1(G) is
naturally isomorphic to π0(GG).

5.6 Connected components of PGLn
We apply 5.4 to G = PGLn. The root-system of PGLn is An−1. In An−1 the
sum of two fundamental co-weights is always a co-root. Therefore we know
the minimal fundamental co-weights as in 5.4 are λ0 = 0 and λi = ω̌i for
i = 1, . . . , n− 1. Thus GPGLn has n connected components.
The natural map SLn ↪→ PGLn induces a morphism of schemes

f : L≥0SL ↪→ L≥0 PGLn

and a morphism of k-spaces

f̄ : GSLn → GPGLn .

We claim that f̄ induces a bijection of GSLn(k) onto Y0(k).
Let λ ∈ QSLn and λ′ = λ ◦ f ∈ QPGLn . Clearly f̄ is given on Gλ as

GSLn ⊃ Gλ → Gλ′ ⊂ GPGLn

g · λ(z) 7→ f(g) · λ′(z)
(4)

As all dominant co-weights ≥ 0 in Λ+
PGLn

are of the form λ′ for λ ∈ QSLn it is
enough to show that the map in (4) is a bijection on closed points.
Injectivity is immediate: if a scalar matrix with entries in k((z)) has determinant
1, its entries are already in k. But then it is contained in SLn(k[[z]]).
Let g · λ′(z) ∈ Gλ′(k) with g ∈ L≥0 PGLn(k). Let ḡ ∈ L≥0 GLn(k) represent g.
By 5.1 we can assume ḡ to have entries in k[z].
Then det(ḡ) ∈ k[z]× = k×. Since k is algebraically closed there is x ∈ k such
that det(x · ḡ) = 1.
Then x · ḡ ∈ L≥0SL(R′) and obviously f(x · ḡ · λ(z)) = g · λ′(z).

Taking a closer look on the fundamental co-weights of PGLn there is a more
descriptive interpretation of the connected components.
We observe that every element L ∈ GPGLn(k) can be represented by an ele-
ment g ∈ GLn(k((z))) with determinant zi such that 0 ≤ i < n. Indeed, let
g ∈ GLn(k((z))) represent L. Then det(g) ∈ k((z))× is of the form u · zi+ lower
z-terms with u ∈ k×. Multiplying with an element of GLn(k[[z]]) we can choose
g such that det(g) = zi. Since z · 1n is a scalar matrix with coefficients in k((z))
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we can assume 0 ≤ i < n.
Every L ∈ Y0

∼= GSLn(k) can be represented by a matrix with determinant 1 and
we can find representatives of ωi(z) with determinant zi (modulo a permuta-
tion). As we know that the isomorphism of Y0 with Yi is given by multiplication
with ωi(z) we conclude that the connected component Yi is characterized as the
subset of points of GPGLn that can be represented by matrices with determinant
zi.

5.7 Minimal degenerations of co-weights
A minimal degeneration of co-weights is a pair (λ, µ) with λ, µ ∈ Λ+

G such that

• λ < µ

• if λ ≤ ν ≤ µ with ν ∈ Λ+
G, then ν = λ or ν = µ.

In other words, λ and µ are neighbours in the partial order on Λ+
G.

5.8 The singularity belonging to a minimal degeneration
The object of our study will be

L<0G · Lλ ∩ Gµ (5)

where (λ, µ) is a minimal degeneration of co-weights.
In 5.2 arises a first example, the pair (0, λmin). Then (5) is the intersection of
the second smallest orbit of Y0 (the smallest non-trivial one) with the open cell
(defined in 3.15). This will be discussed in detail in section 8.

Lemma 5.9

GG =
⋃̇
λ∈Λ+

G
p∈G·Lλ

L<0G · p

Proof. The statement is equivalent to

GG(k) =
⋃̇
λ∈Λ+

G

G(k[z−1]) · Lλ (6)

Indeed, L<0G(k) is defined as the kernel of G(k[z−1]) → G(k) and thus every
element in G(k[z−1]) can be expressed uniquely as a product of an element of
L<0G(k) with an element of G(k).
The equation (6) is a consequence of the decomposition

G(k((z))) =
⋃̇
λ∈Λ+

G

G(k[z−1]) · λ(z) ·G(k[[z]]) (7)
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The equality (7) is proved in [Faltings, 2003, Lemma 4].
We try to explain the approach used in the proof. The idea is to generalize the
follwing characterization of vectorbundles on P1

k.
Let A0 = Spec k[z] = D+(z−1) ⊂ P1

k and A∞ = Spec k[z−1] = D+(z) ⊂ P1
k.

A vectorbundle on P1
k is given by gluing (trivial) vectorbundles on A0 and A∞

along Spec k[z, z−1]. The gluing isomorphism is given by an automorphism
of the trivial bundle of rank n on Spec k[z, z−1], hence as an element g of
GLn(k[z, z−1]). A change of basis in a free modules of rank n over k[z] and
k[z−1] corresponds to the transformation g 7→ g−1

− ·g ·g+ with g− ∈ GLn(k[z−1])
and g+ ∈ GLn(k[z]).
Let

E := {Vectorbundles on P1
k}/ ∼=

It is known that the construction above provides a bijection

ψ : E ↔ GLn(k[z−1])\GLn(k[z, z−1])/GLn(k[z]).

Define
Zn+ := {(m1, . . . ,mn) ∈ Zn | m1 ≥ m2 ≥ · · · ≥ mn}

It is known that any vectorbundle E of rank n on P1
k has a unique decomposition

into a direct sum

E ∼=
n⊕
i=1

O(mi)

with mi ∈ Z. This can be found in [Grothendieck, 1957].
Ordering the mi we obtain a bijection

ϕ : E ↔ Zn+

Define a map

p : Zn+ → GLn(k[z−1])\GLn(k[z, z−1])/GLn(k[z])
(m1, . . . ,mn) 7→ diag(zm1 , . . . , zmn)

We claim p = ψ ◦ ϕ−1.
Let (m1, . . . ,mn) ∈ Zn+ and let E be the vectorbundle obtained by gluing On

A0

and On
A∞ along Spec k[z, z−1] via the isomorphism given by diag(zm1 , . . . , zmn)

(with respect to the standard basis).
This isomorphism obviously respects the direct sums. Hence E is the direct
sum of the linebundles obtained by gluing OA0 and OA∞ along Spec k[z, z−1]
via multiplication with zmi . It is easy to see that these linebundles are O(mi).
This proves the claim.
Consequently p is a bijection, in particular surjective. We obtain:

G(k[z−1])\GLn(k[z, z−1])/G(k[z])

=
⋃̇

(m1,...,mn)∈Zn+

GLn(k[z−1])\GLn(k[z−1]) · diag(zm1 , . . . , zmn) ·GLn(k[z])/GLn(k[z])

and

GLn(k[z, z−1]) =
⋃̇

(m1,...,mn)∈Zn+

GLn(k[z−1])·diag(zm1 , . . . , zmn)·GLn(k[z]) (8)
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The proof in [Faltings, 2003] modifies this idea in two aspects:

• The gluing of trivial vectorbundles on copies of A1
k is replaced by gluing

vectorbundles on P1
k \ {∞} and the formal completion along {0}.

• Vectorbundles are replaces by G-torsors, to obtain results for reductive
groups instead of GLn

We explain the first modification in the case of vectorbundles:
Observe that k[z] → k[z, z−1] and k[z] → k[[z]] are flat, since they are torsion
free over k[z]. Since

Spec k[z, z−1]q Spec k[[z]]→ Spec k[z]

is obviously surjective, it is a faithfully flat cover.
This extends to a faithfully flat cover

P1
k \ {0} q Spec k[[z]]→ P1

k

Using faithfully flat descent (SGA1 [Grothendieck and Raynaud, 1971, Exposé
VIII]) we can glue vectorbundles E ′ on P1

k \ {0} ∼= Spec k[z−1] and E ′′ on
Spec k[[z]] to a vectorbundle on P1

k by giving an isomorphism of their “restric-
tions” E ′ ⊗k[z] k((z)) resp. E ′′ ⊗k[z] k((z)) to Spec k((z)).
Reformulating this in terms of matrices, this amounts to the following:
A vectorbundle on P1

k is given by g ∈ GLn(k((z))), corresponding to the iso-
morphism of E0 ⊗k[z] k((z)) with E ′′ ⊗k[z] k((z)). A choice of basis of E ′ and E ′′

corresponds to the transformation g 7→ g−1
− · g · g+ with g− ∈ GLn(k[z−1]) and

g+ ∈ GLn(k[[z]]). One can show that this gives a bijection

ψ′ : E ↔ GLn(k[z−1)\GLn(k((z)))/GLn(k[[z]])

There is a natural map

p′ : GLn(k[z−1])\GLn(k[z, z−1])/GLn(k[z])→ GLn(k[z−1])\GLn(k((z)))/GLn(k[[z]])

Obviously we have p′ ◦ ψ = ψ′. But this means p′ is surjective (even bijective)
and using (8) we obtain

G (k((z))) =
⋃̇

(m1,...,mn)∈Zn+

GLn(k[z−1]) · diag(zm1 , . . . , zmn) ·GLn(k((z)))

5.10
It is interesting to note that one can use the construction in the proof of Lemma
5.9 the other way around. It is possible to verify (8) by explicit calcula-
tions to obtain another proof of the characterization of vectorbundles on P1

k.
This calculation was first done by Birkhoff. An exposition can be found in
[Bodnarchuk et al., 2006].
We could in fact have used the very same calculation to proof our result (at
least in the case of GLn).
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5.11 Loop rotation
The so-called “loop rotation” give a useful description of L<0G · Lλ.
To define it we first observe that GG fulfills the valuative criterion for properness
(since GG is not a scheme of finite type that does not mean that GG is proper in
any sense). Let R be a discrete valuation ring with field of fractions K. Given
a diagram

SpecK
f //

� _

��

GG

��
SpecR // Spec k

there is a unique morphism SpecR→ GG such that the diagram commutes: The
image of f is contained in G

(N)
G for suitable N ∈ N by Lemma 2.4. But G

(N)
G is a

closed subscheme of a Grassmannian, thus projective. Now we can use the valu-
ative criterion for properness on G

(N)
G → Spec k to obtain the desired morphism.

Given L ∈ GG(k) we can view it as an element of GG(k((s))) via the natural
inclusion. Let s−1 be the automorphism of GG(k((s))) induced by the map

k((s))[[z]]→ k((s))[[z]]

z 7→ s−1z

Define s−1L to be the image of L under s−1.
By the valuation criterion this k((s))-valued point extends to a k[[s]]-valued point
(which we also call s−1L). Define lim

s→0
s−1L ∈ GG(k) to be its image under the

reduction map k[[s]]→ k, s 7→ 0.
Thus we have defined a map

lim
s→0

s−1 : GG(k)→ GG(k((s))) s−1

−−→ GG(k((s)))→ GG(k[[s]]) z 7→0−−−→ GG(k)

5.12
We have lims→0 s

−1 · Lλ = Lλ since

λ(s−1z) = λ(z) · λ(s−1) ≡ λ(z) mod G(k((s))[[z]]).

Lemma 5.13
Let L ∈ GG(k), let p ∈ G(k) · Lλ. Then:

(a)
L ∈ L<0G · p⇔ lim

s→0
s−1L = p

(b) L<0G · Lλ is s−1-stable in the sense that for L ∈ L<0G · Lλ we have
s−1L ∈ L<0G (k((s))) · Lλ.
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Proof.

(a) Let L = h · p · Lλ with h ∈ L<0G.
Define s−1 : L<0G(k) → L<0G(k((s))) in the obvious way. Then s−1h is
a k[[s]]-valued point of L<0G which allows us to set s = 0. Obviously
lims→0 s

−1h = 1G. Thus

lim
s→0

s−1L = lim
s→0

s−1(h · p · Lλ)

= (lim
s→0

s−1h) · p · (lim
s→0

s−1Lλ) since p is a k-point

= p · Lλ by 5.12

The other implication follows from 5.9.

(b) This follows from 5.12 and s−1h ∈ L<0G (k((s))) for h ∈ L<0G(k)

Lemma 5.14
For all λ ∈ Λ+

G we have

L<0G · Lλ ∩ Gλ = {Lλ}

Proof. Let L ∈ L<0G · Lλ ∩ Gλ.
Recall the construction of 3.13. Let λ(z) = diag(zλ1 , . . . , zλn). Let N ∈ N such
that Gλ ⊂ G

(N)
G . Then zjei with N > j ≥ λi, i = 1, . . . , n is a basis of Lλ as

a point of Grassz(nN, 2nN). Let A ∈ M(n,r)(R) be the matrix representing Lλ
that corresponds to this basis.
Let L = g · Lλ with g ∈ G(R[[z]]). By 4.5 we can assume g = g0 + zg1 + z2g2 +
. . . + zNgN with gi ∈ Mn(R). Written as n × n block matrices, representing
point of Grassz(nN, 2nN) we have

L ≡ g · Lλ ≡



g0 0 · · · · · · 0

g1 g0
. . .

...

g2 g1 g0
. . .

...
...

...
. . . . . . 0

gN gN−1 · · · g1 g0


· Lλ

By the form of the basis given, we know that in every column there is exactly
one entry “1”. Therefore the matrix g ·Lλ ·g−1

0 ∈ Uλ is of the standard form for
Uλ (meaning the rows corresponding to the basis given above form a nN × nN
identity matrix, see 3.13).
Written as a n× n block matrix A consists of blocks of diagonal matrices with
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diagonal entries 0 or 1. Therefore

L ≡ g · Lλ · g−1
0 ≡



1n 0 · · · · · · 0

g′1 1n
. . .

...

g′2 g′1 1n
. . .

...
...

...
. . . . . . 0

g′N g′N−1 · · · g′1 1n


· Lλ

for suitable g′j ∈ Mn(R). Write g′ for this block matrix.
We assumed L ∈ L<0G · Lλ. By Lemma 5.13 we know

lim
s→0

s−1 ·
(
g′ · Lλ

)
= Lλ

But g′ ·Lλ differs from Lλ only in entries below the non-zero entries of Lλ. But
then the equality above only holds if g′j = 0 for all j. Consequently L = Lλ.

5.15
The proof of Lemma 5.14 also yields that L<0G · Lλ ∩ Gλ′ = ∅ for λ′ � λ. We
will not need this, but it justifies the construction of the transverse slice (see
Lemma 6.8).

6 Basic properties of GG and L<0G · Lλ ∩ Gµ

6.1 Formal smoothness of k-spaces
Following [Drinfeld, 2003, 6.3.6] we call a morphism of k-spaces f : X → Y
formally smooth if it satisfies the infinitesimal lifting criterion for affine test-
schemes. This means we require for every affine Y -scheme SpecA and every
nilpotent ideal I ⊂ A the natural map

HomY (SpecA,X)→ HomY (SpecA/I,X)

to be surjective.
In other words, in every diagram of the form

Spec(A/I) //

��

X

f

��
SpecA //

g

::u
u

u
u

u
Y

there is a morphism g : SpecA→ Y such that the diagram is commutative.
Formal smoothness is stable under basechange by the universal property of fibre
products.
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A morphism of k-spaces f : X → Y is formally smooth if and only if every
basechange to an affine k-scheme is formally smooth:
One direction follows since formal smoothness is stable under basechange.
Let f : X → Y such that every basechange fB : X ×Y SpecA → SpecB to an
affine k-scheme SpecB is formally smooth and let

Spec(A/I) //

��

X

f

��
SpecA // Y

as above. Then in particular the basechange fA is formally smooth. By the
universal property of X ×Y SpecA the morphism Spec(A/I)→ X factors as

Spec(A/I) //

��

X ×Y SpecA //

fA

��

X

f

��
SpecA = // SpecA // Y

Since fA is formally smooth, there is a lifting gA : SpecA→ X ×Y SpecA and
hence a lifting g : SpecA→ X.

If f : X → Y is representable then smoothness is local on the base. This
means if there is an open cover Ui of Y such that fi : X ×Y Ui → Ui is formally
smooth, then f is formally smooth.
We have seen that it es enough to check smoothness for every basechange fB to
an affine k-scheme SpecB. If Ui is an open cover of Y , then Ui×Y SpecB is an
open cover of SpecB. If fi is formally smooth, so is

fi,B : X ×Y Ui ×Y SpecB → Ui ×Y SpecB

If we assume f to be representable, then X ×Y SpecB is a scheme, fB is a
morphism of schemes and fi,B are the restrictions to the open cover Ui×Y SpecB
of SpecB. Since formal smoothness is local for morphisms of schemes (see EGA
IV4 [Grothendieck and Dieudonné, 1967, Proposition 17.1.6]), we find that fB
is formally smooth, proving the statement.

Lemma 6.2
L≥0G is formally smooth over k.

Proof. We have to prove that for every k-algebra A and every nilpotent ideal I
in A the natural map

L≥0G(A) = G(A[[z]])→ G((A/I)[[z]]) = L≥0G(A/I)

is surjective.
Let Ĩ be the kernel of the natural surjection A[[z]] � (A/I)[[z]].
If Ir = (0) then Ĩr = (0). Thus Ĩ is a nilpotent ideal of A[[z]] and

G(A[[z]])→ G(A[[z]]/Ĩ) = G((A/I)[[z]])

is surjective since G is smooth over k.
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Lemma 6.3
The quotient map q : LG→ LG/L≥0G = GG is formally smooth.

Proof. First we prove that q is representable. By 4.3 the basechange of q to the
open cell L<0G · L0 is the first projection

pr1 : L<0G× L≥0G→ L<0G · L0

Let S → GG with S a scheme. We have to show that the fibre product S×GG LG
is representable.
Let S′ = S ×GG L<0G · L0. Then S′ is an open subscheme of S and there is a
cartesian diagram

L≥0G×k S′ //

��

S′

��
L<0G×k L≥0G // L<0G · L0

Since L≥0G is a scheme, so is L≥0G×k S′. Doing the same for the translates of
L<0G we obtain an open cover of S×GG LG by schemes of the form L≥0G×k S′.
Gluing them together yields that S ×GG LG is representable.
Using 6.1 we can test whether q is formally smooth on the open cover formed
by the translates of the open cell L<0G · L0. As above the basechange to
L<0G · L0 is just a projection which is a basechange of the structure morphism
L≥0G→ Spec k. But this is smooth by Lemma 6.2.

For the next proof we need the following notions. They are discussed in
detail for example in [Altman and Kleiman, 1970].

6.4 Serre’s conditions Rl and Sl
A locally noetherian scheme X is said to satisfy condition Rl for l ∈ N if X is
regular in co-dimension ≤ l, i.e. if all local rings dim OX,x with dim OX,x ≤ l
are regular.
X is said to satisfy condition Sl for l ∈ N if for all x ∈ X

depth(OX,x) ≥ inf{l,dim(OX,x)}.

For example X satisfies Rl for all l ∈ N if and only it is regular. It satisfies Sl
for all l ∈ N if and only if it is Cohen-Macaulay. It is known that X is normal
if and only if it satisfies R1 and S2. This is called “Serre’s criterion” and can
also be found in [Altman and Kleiman, 1970].

Lemma 6.5 ([Altman and Kleiman, 1970, Theorem 4.8])
Let X and Y be locally noetherian schemes and f : X → Y a faithfully flat
morphism. Fix l ∈ N. Then:

(a) If X satisfies Rl (resp. Sl), then Y satisfies Rl (resp. Sl).

(b) If Y satisfies Rl (resp. Sl) and for each y ∈ f(X) the fibre over y satisfies
Rl (resp. Sl), then X satisfies Rl (resp. Sl).
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6.6
We will use the fact that Gλ is normal to prove normality of the scheme
L<0G · Lλ ∩ Gλ. The former is proved in [Faltings, 2003, section 4] or in a
more general case in [Pappas and Rapoport, 2006, theorem 8.4] , both using
Frobenius splitting. This result is not needed in what follows.

Lemma 6.7 ([Malkin et al., 2005, Lemma 2.5])

(a) Let λ ∈ Λ+
G. Then L<0G ·Lλ is a transverse slice to Gλ at the point Lλ in

the sense that

(i) L<0G · Lλ is locally closed in GG

(ii) the action map m : L≥0G× L<0G · Lλ → GG is formally smooth

(iii) for λ, µ ∈ Λ+
G with λ ≤ µ one has

dim(L<0G · Lλ ∩ Gµ) = dim Gµ − dim Gλ

(b) The scheme L<0G · Lλ ∩ Gµ is integral and normal.

Proof. (a) Consider the following diagram:

{e} × L<0G
� � //

·Lλ
����

L≥0G× L<0G
� � m // LG

∼=
·λ(z)

// LG

����
L<0G · Lλ // LG/L≥0G = GG

The top row is a closed immersion followed by an open immersion (Lemma
4.2) and since the right vertical map is a topological quotient map (re-
stricted to G

(n)
G , commutativity yields i).

Now to ii) It suffices to show that m : m−1(G (N)
G ) → G

(N)
G is smooth for

every N ∈ N since every morphism of a quasi-compact scheme to GG fac-
tors through one of the G

(N)
G (compare Lemma 2.4) and we are only using

affine test schemes.
So we have to show that in every diagram of the form(

ΓN × L<0G · Lλ
)
∩m−1

(
G

(N)
G

)
m // G (N)

G

Spec(A/I)

f

OO

// SpecA

g

OO

g′

jjU U U U U U U U U U

where I is a nilpotent ideal there exists a lift g′ of g. By Lemma 4.5 we
can replace L≥0G by ΓN , since the map L≥0G→ ΓN is formally smooth,
using Lemma 6.2. Then we can assume m to be of finite type and replace
formal smoothness with smoothness.

By SGA1 ([Grothendieck and Raynaud, 1971, Exposé III, Corollaire 2.2])
we can then take a local artin ring with residue field k as test scheme. We

33



simplify the notation by omitting the restriction to G
(N)
G and just assume

that m is of finite type. So it remains to show that in the diagram

L≥0G× L<0G

q
����

� � m // LG
∼=
·λ(z)

// LG

����
ΓN × L<0G · Lλ // GG

Spec k

f

OO

// SpecC

g

OO

g′

jjU U U U U U U U U

there exists a lift g′ of g.
Since k is algebraically closed and the fibres of q are isomorphic to
StabL≥0G(Lλ(z)), the stabilizer of Lλ in L≥0G, we can lift f to a geometric
point of L≥0G × L<0G. But since the top row and the quotient map
LG → LG/L≥0G are formally smooth by Lemma 6.3 we can lift g to a
map

g′′ : SpecC → L≥0G× L<0G

and thus to a map

g′ : SpecC → L≥0G× L<0G · Lλ.

To prove iii) we factor the map

m : L≥0G× (L<0G · Lλ ∩ Gµ)→ Gµ

as above, using that Gµ ⊂ G
(N)
G for suitable N ∈ N (see 5.1):

m′ : ΓN × (L<0G · Lλ ∩ Gµ)→ Gµ

We claim that the fibre of m′ over the point Lλ ∈ Gµ is StabL≥0G(Lλ)/L>2NG.
Then

dim ΓN + dim(L<0G · Lλ ∩ Gµ)

= dim Gµ + dim(StabL≥0G(Lλ)/L>2NG)

since m′ is smooth by ii) and m′ is of finite type (as in ii)). Thus

dim(L<0G · Lλ ∩ Gµ)

= dim Gµ + dim(StabL≥0G(Lλ)/L>2NG)− dim L≥0G/L>2NG

= dim Gµ + dim Gλ

where the last equality holds because Gλ ∼= L≥0G/StabL≥0G(Lλ).
To prove the claim we observe that any preimage of Lλ under m is of
course contained in Gλ. Thus it suffices to show L<0G · Lλ ∩ Gλ = {Lλ},
which is Lemma 5.14. This proves iii).
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(b) We use the map

m : L≥0G× (L<0G · Lλ ∩ Gµ)→ Gµ.

By a) ii) it is formally smooth.
Locally L≥0G×(L<0G ·Lλ∩Gµ) is of the form Spec(A⊗kB) where SpecA
and SpecB are open affine subsets of L≥0G and (L<0G ·Lλ ∩ Gµ) respec-
tively.
Since L≥0G× (L<0G ·Lλ ∩Gµ) is integral A⊗k B is an integral k-algebra.
This is only possible if B is as well integral. Therefore Lλ ∩Gµ is integral.

For normality we factor m as above through ΓN × (L<0G · Lλ ∩ Gµ) and
get a map of finite type that is smooth. Thus it has regular fibres.
This means the fibres satisfy all the Rl and Sl defined in 6.4. Since Gµ
is normal (6.6) it satisfies R1 and S2 by Serre’s criterion. Using Lemma
6.5 b) (with Y the image of m, which is normal since it is open in Gµ) we
conclude that the same is true for ΓN × (L<0G · Lλ ∩ Gµ).

The projection ΓN×L<0G·Lλ → L<0G·Lλ is a basechange of the structure
morphism of ΓN and therefore faithfully flat. Using Lemma 6.5 b) we get
that L<0G · Lλ satisfies S2 and R1. Using Serre’s criterion again yields
that it is normal, proving iii).

6.8 The transverse slice
Let (λ, µ) be a minimal degeneration of co-weights. Using Lemma 5.14, 5.15
and Lemma 6.7 we can explain the idea of the transverse slice L<0G · Lλ ∩ Gµ
defined in 5.8, as indicated in the introduction.
Let N ∈ N such that G (N) contains Gµ. Then

m′ : ΓN × (L<0G · Lλ ∩ Gµ)→ Gµ

is smooth by the proof of Lemma 6.7 and the image meets and therefore con-
tains Gµ.
By Lemma 5.14 we know that L<0G ·Lλ∩Gµ contains Lλ, therefore the image of
m′ also contains Gλ. By 5.15 it contains no other orbit, so the image is Gµ ∪Gλ.
Since ΓN is smooth over k (argue as in Lemma 6.2), this means (L<0G ·Lλ∩Gµ)
is smoothly equivalent to Gµ ∪ Gλ.

7 Reduction to the Levi-subgroup

Let P ⊂ G be a parabolic subgroup with B ⊂ P . Let GL be a Levi subgroup
of P such that T ⊂ GL. Let M = [GL, GL], the commutator of GL. M is
connected and semi simple. Let IM ⊂ IG be the Dynkin diagram associated
to M , ΛM ⊂ ΛG the co-weight lattice of M , Λ+

M ⊂ Λ+
G the set of dominant
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co-weights and QM the co-root lattice of M .

For λ ∈ ΛG with
λ =

∑
i∈IG

λiω̌i

with λi ∈ Z we define
λM =

∑
i∈IM

λiω̌i.

Lemma 7.1
Let λ be a co-weight of G such that λ is in the co-weight lattice ΛM of M . Then

λ = λM ∈ ΛM

Proof. Let (ω̌i)i∈I be the fundamental co-weights of G and (ω̌i,M )i∈IM with
IM ⊂ I the fundamental co-weights of M .
For i ∈ IM the co-roots αi and αi,M are equal and so

λ =
∑
i∈I
〈λ, α̌i〉ω̌i and

λM =
∑
i∈IM

〈λ, α̌i〉ω̌i,M

For j ∈ IM we obtain

〈λM , α̌j〉 =
∑
i∈IM

〈λ, α̌i〉〈ω̌i,M , αj〉 = 〈λ, α̌j〉

Therefore 〈λ− λM , α̌j〉 = 0 for j ∈ IM .
Since λ− λM ∈ ΛM and the α̌i are dual to a basis of ΛM the claim follows.

7.2
Let Uαi , i ∈ IM be the root subgroup associated to αi (see [Springer, 1998] for
example). For any (algebraically closed) field K the group M(K) is generated
by the U±αi(K), i ∈ IM and the torus of M . Let α = ±αi, i ∈ IM .
By the very definition of Uα we have ω̌j(z) · x · ω̌j(z−1) = α(ω̌j(z)) · x for
x ∈ Uα(K). But the composition α ◦ ω̌j is 1 if j /∈ IM . Thus conjugation by
(λM − λ)(z) induces the identity on all U±αi(K) and hence on M(K).
Using this fact on the algebraic closure of k((z)) we find that this conjugation
acts trivially on M(k((z))) and thus on M(k[[z]]).
It follows that λ(z) · L≥0M · λ(z−1) = λM (z) · L≥0M · λM (z−1).

Lemma 7.3 ([Malkin et al., 2005, Lemma 3.2])
Let λ ∈ Λ+

G. Then there is a natural isomorphism of k-spaces

LM · Lλ
∼=−→ GM

m · Lλ 7→ m · LλM .
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Proof. We reproduce the proof of [Malkin et al., 2005].
Knowing that LM · Lλ ∼= LM/StabLM (Lλ), we have

StabLM (Lλ) = LM ∩
(
λ(z) · L≥0G · λ(z−1)

)
= λ(z) ·

((
λ(z−1) · LM · λ(z)

)
∩ L≥0G

)
· λ(z−1)

= λ(z) ·
(
LM ∩ L≥0G

)
· λ(z−1)

= λ(z) · L≥0M · λ(z−1)

= λM (z) · L≥0M · λM (z−1) by 7.2

Let GM,µ := L≥0M · Lµ ⊂ GM for µ ∈ Λ+
M , the Schubert variety of M corre-

sponding to µ.

7.4
Let λ ≤ µ ∈ Λ+

G with µ− λ ∈ QM .
Call the isomorphism in Lemma 7.3 f . Then f(L<0M · Lλ) = L<0M · LλM
and f(L≥0M · Lµ) = L≥0M · LµM = GM,µ by the definition of f . Since f is an
isomorphism f(L≥0M · Lµ) = L≥0M · LµM .
Therefore f restricts to an isomorphism of schemes

GG ⊃ (L<0M · Lλ) ∩ L≥0M · Lµ
∼=−→ (L<0M · LλM ) ∩ GM,µM ⊂ GM .

Lemma 7.5
Let λ ≤ µ ∈ Λ+

G with µ− λ ∈ QM . Then

dim GM,µM − dim GM,λM = dim Gµ − dim Gλ

Proof. By Lemma 5.3 c) we know that dim Gλ = 〈2ρ, λ〉 and dim Gµ = 〈2ρ, µ〉
and similar for GM,λM and GM,µM . Thus

dim Gµ − dim Gλ = 〈2ρ, µ〉 − 〈2ρ, λ〉
= 〈2ρ, µ− λ〉
= 〈2ρ, µM − λM 〉 by Lemma 7.1 for λ− µ
= 〈2ρM , µM − λM 〉 as 〈α̌i, µM − λM 〉 = 0 for i ∈ I \ IM
= dim GM,µM − dim GM,λM

Lemma 7.6 ([Malkin et al., 2005, Lemma 3.3])
Let λ ≤ µ ∈ Λ+

G with µ− λ ∈ QM . Then

L<0M · Lλ ∩ L≥0M · Lµ = L<0G · Lλ ∩ L≥0G · Lµ

as subschemes of GG.
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Proof. Let YM = L<0M · Lλ ∩ L≥0M · Lµ and YG = L<0G · Lλ ∩ L≥0G · Lµ.
It follows immediately from Theorem 4.4 that YM ⊂ YG is an immersion. Since
both are equipped with the reduced scheme structure it is enough to show that
YG \ YM = ∅. By Lemma 7.4 (and Lemma 6.7 a), iii) ) we know:

dimYM = dim
(

(L≤0M · λM (z)) ∩ L≥0M · µM (z)
)

= dim GM,µM − dim GM,λM using Lemma 5.3 c)
= dim Gµ − dim Gλ by Lemma 7.5
= dimYG

YG is irreducible by Lemma 6.7 b), yielding YM = YG and

YG \ YM ⊂ YM \ YM = ∂YM

Hence YM is locally closed in GG by Lemma 6.7 a) i) and Theorem 4.4. Thus
∂YM is closed in GG .
Assume there is a L ∈ YG \ YM .
Because of Lemma 5.13 we know that lim

s→0
s−1L = Lλ. But ∂YM does not

contain Lλ and is closed. This contradicts the fact that ∂YM is s−1-stable by
Lemma 5.13 and specialization does not leave a closed subset.

8 Intersection with the open cell

In this paragraph we assume that G is semi simple and that the Dynkin-diagram
of G is connected. We use the notation from 5.2 and study the intersection de-
fined in 5.8, belonging to the minimal degeneration (0, λmin). We show that it
is a Kleinian singularity arising in the closure of a conjugacy class in the Lie
algebra of G.
We do not require G to be simply connected but the singularity L<0G·L0∩Gλmin

depends only on the connected component Y0 containing L0, since L<0G is con-
nected (see [Laszlo and Sorger, 1997]).

8.1 Conjugacy classes in the Lie algebra
We recall some facts about conjugacy classes of g = LieG.
The embedding G ↪→ SLn induces an embedding g ↪→ sln = Lie SLn. We
identify sln with the matrices in Mn with trace 0. G acts on g via the adjoint
representation. Using the embedding into sln this is given by conjugation of
matrices

G× g→ g

(g, x) 7→ g · x · g−1

The orbits of this action are called conjugacy classes. The conjugacy classes are
locally closed in g and their closure is clearly the union of conjugacy classes.
We are interested in the conjugacy classes contained in the nilpotent cone in g
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(resp. sln), defined by the condition that the characteristic polynomial is Tn.
These conjugacy classes are discussed in detail in [Kraft and Procesi, 1981] and
[Kraft and Procesi, 1982].
There is always a unique closed conjugacy class C and a unique conjugacy class
Cmin such that Cmin = C ∪ Cmin. Cmin is called the minimal conjugacy class,
since it is the “smallest” non-trivial one.

8.2
Lemma 3.14 holds for G in the sense that L<0G · L0 ∩ G

(N)
G is contained in a

standard open set of a Grassmannian:

L<0G · L0 ∩ G
(N)
G = U (N)

0,G ↪→ U0 ∩Grassz(nN, 2nN)

This gives a description of L<0G · L0 ∩ G
(N)
G in terms of matrices. This is just

the restriction of the statement of Lemma 3.14 to GG.
There is another account of U (N)

0,G :

Obviously U (N)
0,G
∼= L<0G ×GG G

(N)
G =: X since U0,G

∼= L<0G. Consider the
diagram

X
op. //

cl.

��

LG(N) // //

cl.

��

G
(N)
G

cl.

��
L<0G

op. // LG // // GG

where the right square and the outer rectangle are cartesian, and consequently
the left square, too. Here cl. stands for “closed immersion” and op. for “open
immersion”.
We obtain

X = L<0G×LG LG(N) (1)

Since L<0G×LG LG(N) → GG embeds into Γ−N by 4.5, the diagram

X
op. //

cl.

��

Γ−N

cl.

��
L<0G

op. // GG

is also cartesian. Consequently X → Γ−N is an open immersion.
By (1) we know X(R) = L<0G(R) ∩ LG(N)(R). Then

X(R) = ker
(
G(R[z−1]/z−2N )→ G(R)

)
since this is clearly the image of L<0G(R)∩LG(N)(R) in Γ−N (R) = G

(
R[z−1]/z−2N

)
.

Theorem 8.3 ([Malkin et al., 2005, 2.10])
There is a natural isomorphism of k-schemes

(L<0G · L0) ∩ Gλmin

∼=−→ Cmin ⊂ g
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Proof. Using 8.2 for N = 2 we find that

f :
(

L<0G · L0 ∩ G
(1)
G

)
(R)

∼=−→ ker
(
G(R[z−1]/z−2)→ G(R)

)
But the right hand side is equal to g(R).
We can give this isomorphism more explicitly:
By 8.2 we can write L ∈ L<0G · L0 ∩ G

(1)
G as an element of U0 ∩Grassz(2n, n).

This means L is represented by a block matrix

L =
(
A
1n

)
with respect to the basis z−1e1, . . . , z

−1en, e1, . . . , en of (R[z]/z2)n.
By construction (3.12) U0

∼= An2
= Mn. Then f is given by

f : (L<0G · L0) ∩ G
(1)
G ↪→ Mn(
A
1n

)
7→ A

To prove the theorem we take a look at the G(R[[z]])-action on both sides.
By Lemma 4.5 we know that G(R[[z]]) acts on G

(1)
G via G(R[z]/(z2)).

Let g ∈ G(R[[z]]), g = g0 + zg1 with g0 ∈ G(R), g1 ∈ Mn(R), such that g · L ∈
L<0G · L0. Then

g ·
(
A
1n

)
= (g0 + zg1) ·

(
A
1n

)
=
(

g0A
g0 + g1A

)
=
(

(g0 + g1A)A(g0 + g1A)−1

1n

)
· (g0 + g1A)

where the last equality holds because A2 = 0. We know that (g0 + g1A) is
invertible by the assumption that g · L ∈ L<0G · L0.
This means, given L ∈ (L<0G·L0)∩G

(1)
G then f ′(g·L) = (g0+g1A)A(g0+g1A)−1

is contained in the conjugacy class of f ′(L) in g. On the other hand, choosing
g = g0 ∈ G, every element in the conjugacy class of f ′(L) is of the form f ′(g ·L).
This means G(R[[z]])-orbits in L ∈ (L<0G ·L0)∩G

(1)
G are mapped into conjugacy

classes of g. In particular there is a G(R[[z]])-orbit inside (L<0G ·L0)∩G
(1)
G that

is mapped to the minimal orbit of g. As both sides have a unique minimal non-
trivial orbit above 0 (GG since G has a connected Dynkin-Diagram connected
and g by 8.1), this concludes the proof.

9 The Case of PGL2

Let G = PGL2. Then the root system is A1 and there is only one fundamental
co-weight ω̌. The only simple co-root is 2ω̌. There are two minimal fundamental
co-weights, 0 and ω̌. The order of dominant co-weights is linear above each of
the two and the only minimal degenerations (λ, µ) are λ = p·ω̌ and µ = (p+2)·ω̌
for p ∈ N.

40



9.1 The characteristic polynomial of z
LetG = SLn, λ ∈ Λ+

SLn
and L ∈ Gλ(R). Let L̄ be its image in Grassz(nN, 2nN)(R).

Then the characteristic polynomial p(T ) of z as an endomorphism of the R-
module L̄ is TnN :
LetA ∈ MnN,2nN (R) represent L̄ as in 3.12. Let J = {j1, . . . , jnN} ⊂ {1, . . . , 2nN}
such that L̄ ∈ UJ . Then we can choose A such that the submatrix consisting of
the rows with index in J is the identity matrix 1nN . We know how z operates on(
R[z]/(z2N )

)n: on the basis bk (see 3.7) we have z ·bk = bk+2N if k+2N ≤ 2Nn
and z · bk = 0 otherwise.
Let Z be the matrix representing z as a R-linear endomorphism of

(
R[z]/(z2N )

)n
with respect to the basis bj . To calculate p(T ) we have to find a matrix
B ∈MnN (R) with

Z ·A = A ·B

and calculate the characteristic polynomial of B.
But using the special form of A we get that the ji-th row on the right hand side
is the i-th row of B. But the ji-th row on the left hand side is the (ji −N)-th
row of A (if ji −N > 0 and 0 otherwise).
This applies to all elements of UJ . As a result one sees that the columns of
B are just some columns of A. Therefore the coefficients of p(T ) are given as
polynomials on UJ . Choosing another J obviously gives a change of base of A
and B. This does not change the characteristic polynomial of B and we see that
the coefficients of p(T ) are regular functions on Grassz(nN, 2nN).
This means we can define a closed subscheme V of Gλ by the condition p(T ) =
TnN .
But since z is nilpotent we know that all k-valued points of Gλ lie in V . Because
Gλ is equipped with the reduced scheme-structure the assertion follows.

Theorem 9.2
Let G = PGL2 and λ and µ as above. Then

L<0G · Lλ ∩ Gµ ∼= Spec k[T1, T2, T3]/(T p+2
1 − T2T3)

Proof. If p is even then 0 ≤ λ < µ and Gµ ⊂ Y0. We can take Gµ ⊂ GSLn using
5.6, as Gµ is equipped with the reduced structure.
Let α̌ be the simple co-root of SL2 and let m = 1/2p. Under the above iso-
morphism Lλ is sent to Lmα̌ and Lµ is sent to L(m+1)α̌. These are the spe-
cial lattices generated by the matices zmα̌ = diag(zm, z−m) and z(m+1)α̌ =
diag(zm+1, z−m−1) respectively.
Now we can use 5.1 and the construction in the proof of Lemma 3.6.
For SL2 we have Gµ = G

(m+1)
SL2

, since the order of dominant co-weights is linear
in this case. This means we can identify Gµ with Grassz(m + 1, 2m + 2) with
respect to the basis (z−m−1e1, z

−me1, . . . , z
me1, z

−m−1e2, z
−me2, . . . , z

me2).

If p is odd then ω̌ ≤ λ < µ and Gµ ⊂ Y1. Let m = 1/2(p + 1). Then Lλ is
represented by the matrix diag(zm+1, z−m) and Lµ is represented by the matrix
diag(zm+2, z−m−1).
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There is an embedding f : Gµ ∼= GSLn , given by multiplication with ω̌(z) using
5.6. Under this isomorphism G

(m+1)
SL2

, parametrizing lattices L such that

zm+1k[[z]]2 ⊆ L ⊆ z−m−1k[[z]]2

is sent to the subscheme of GPGL parametrizing L such that

zm+2k[[z]]2 ⊆ L ⊆ z−m−1k[[z]]2

This is clearly Gµ, since the partial order of co-weights is linear above ω̌.
We identify it in the usual way with Grassz(4m+ 6, 2m+ 3) with respect to the
basis (z−m−1e1, z

−me1, . . . , z
me1, z

m+1e1, z
−m−1e2, z

−me2, . . . , z
me2, z

m+1e2).
Let r = 2m + 2 in the case of p being even or r = 2m + 4 in the case of p

being odd.
Since Gµ ∩ L<0G · zλ ⊂ U (r)

λ by 3.13, L ∈ (Gµ ∩ L<0G · zλ)(k) has to be of the
form

L=̂



a1,1 a1,2 . . . . . . . a1,r

a2,1
. . . a2,r

...
. . .

...
...

. . .
...

ar−1,1 . . . . . . . . . . . . . ar−1,r

1 0 . . . . . . . 0
c1 c2 . . . . . . . cr
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . . 0 1 0
0 . . . . . . . . 0 1


with respect to the basis

(
z−me1, z

−m+1e1, . . . , z
m−1e1, z

−me2, z
−m+1e2, . . . , z

m−1e2

)
where the size of each block is r. The line marks the point where the e2-entries
start.
By Lemma 5.13

L ∈ L<0G · zλ ⇔ lim
s→0

s−1 · L = zλ

We can apply this criterion to the above matrix and get

lim
s→0

s−1·L = lim
s→0



sma1,1 sma1,2 . . . . . . . . . . . . . . . . . . . . sma1,r

sm−1a2,1 sm−1a2,2 sm−1a2,r

...
. . .

...
s−m+2ar−1,1 s−m+2ar,2 · · · s−m+2ar−1,r−1 s−m+2ar−1,r

s−m+1 0 . . . . . . . . . . . . . . . . . . . . 0
smc1 smc2 . . . . . . . . . . . . . . . . . . . . smcr

0 sm−1 0 . . . . . . . . . . . . . . . 0
...

. . . . . . . . .
...

0 . . . . . . . . . . 0 s−m+2 0
0 . . . . . . . . . . . . . . . 0 s−m+1


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≡ lim
s→0



s2m−1a1,1 sa1,2 s2a1,3 . . . . . . . . s2m−1a1,r

s2m−2a2,1 a2,2 sa2,3 · · · s2m−2a2,r

...
...

. . .
...

sar−1,1 s−2m+3ar−1,1 . . . . . . ar−1,r−1 sar−1,r

1 0 . . . . . . . . . . . . . . . . 0
s2m−1c1 sc2 . . . . . . . . . . . . . . . . s2m−1cr

0 1 0 . . . . . . . . 0
...

. . . . . . . . .
...

0 . . . . . . . . . . . . . 0 1 0
0 . . . . . . . . . . . . . . . . . . . . . 0 1


as points in the Grassmannian.
For this to correspond to the point Lλ all entries under the diagonal of the
upper half matrix must vanish except for the first column, i.e. ai,j = 0 for i ≥ j
and 2 ≥ i ≥ r − 1.
Using the z-stability yields

z · L =



0 . . . . . . . . . . . . . . . 0
a1,1 a1,2 a1,3 . . . a1,r

a2,1 0 a2,3 · · · a2,r

...
...

. . . . . .
...

ar−1,1 0 . . . . 0 ar−1,r

0 . . . . . . . . . . . . . . . 0
c1 c2 . . . . . . . . . cr
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . . 0 1 0



=



a1,1 a1,2 a1,3 . . . a1,r

a2,1 0 a2,3 · · · a2,r

...
...

. . . . . .
...

ar−1,1 0 . . . . 0 ar−1,r

1 0 . . . . . . . . . 0
c1 c2 . . . . . . . . . cr
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . . 0 1 0
0 . . . . . . . . . 0 1


·A

For suitable A ∈ GLr(k).
It is clear that

A =


ar−1,1 0 · · · 0 ar−1,r

c1 . . . . . . . . . . . . . cr
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0


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We obtain the following equations:

(a1,1, . . . , a1,r) ·A = (0, . . . , 0) (9)

(ai,1, . . . , ai,r) ·A = (ai−1,1, . . . , ai−1,r) for i = 2, . . . , r − 1 (10)

(c1, . . . , cr) ·A = (0, . . . , 0) (11)

Using (10) all ai,j are given recursively by ar−1,1 =: c0 and ar−1,r := d because
all other entries in the (r−1)th row are zero. It can be seen easily that the zero
entries in the other rows impose no further restriction.
Looking at (11) in more detail produces the following equations:

c0c1 + c1c2 = 0

(c3, . . . , cr) = −c2(c2, . . . , cr−1) so

ci = c2(−c2)i−2 for i = 3, · · · , r

dc1 + c2cr = 0⇔ dc1 + cr2 = 0 (12)

So we are left with the four variables c1, c2, c0 and d.
Putting (9) and (10) together we get

(c0, 0, . . . , 0, d) ·Ar−1 = (0, . . . , 0)

so we have to compute Ar−1. Luckily we are only interested in the first and last
row of Ar−1 and it is an easy calculation to see that those are

(cr−1
0 d, c0d, c

2
0d, . . . , c

r−2
0 d) and

(c1, c2,−c22, c32, . . . cr−1
2 ) respectively.

Thus the above equation yields

cr0 + c1d = 0 (13)

ci0d+ (−1)i+1ci2d = 0 for i = 1, . . . , r − 1 (14)

But looking at the trace of the matrix A we see c0 = c2 because A = z|L has
the characteristic polynomial T r by 9.1. So the only condition we are left with
is (13). This concludes the proof.

10 Classification of minimal degenerations of
L≥0G-orbits

We cite the following theorem from [Stembridge, 1998] which classifies all min-
imal degenerations.
Let λ, µ ∈ Λ+

G, λ ≤ µ. Denote by Iλ,µ := supp(µ − λ) the Dynkin subdiagram
involving all simple co-roots appearing in the decomposition of µ− λ as a sum
of simple co-roots. This is well defined since the simple co-roots form a basis.
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It is obvious that if (λ, µ is a minimal degeneration, then Iλ,µ is connected.
Let Mλ,µ be the commutator of the Levi subgroup of G corresponding to Iλ,µ
(Mλ,µ is uniquely determined by our choice of B and T as in section 7). Let
Qλ,µ ⊂ Q be the co-root lattice of Mλ,µ and let ᾱλ,µ be the short dominant
co-root in the root-system of Mλ,µ.
Qλ,µ is generated by α̌i, i ∈ Iλ,µ, In particular ᾱλ,µ ∈ {α̌i | i ∈ Iλ,µ}.
Let Jλ,µ be the Dynkin subdiagram of Iλ,µ consisting of the simple co-roots α̌i
for which 〈λ, αi〉 = 0.
We denote by Cmin(λ, µ) the minimal conjugacy class in Lie(Mλ,µ) (see 8.1).

Theorem 10.1 ([Stembridge, 1998, Theorem 2.8])
A pair λ, µ ∈ Λ+

G is a minimal degeneration if and only if one of the following
conditions hold:

(a) µ− λ is a simple co-root α̌i, i ∈ IG

(b) Iλ,µ = Jλ,µ and µ− λ = ᾱλ,µ

(c) Iλ,µ = Jλ,µ∪{i}, Iλ,µ is of type C,αi is short, 〈λ, α̌i〉 = 1, and µ−λ = ᾱλ,µ

(d) Iλ,µ = Jλ,µ∪{i}, Iλ,µ ∼= G2, αi is short, 〈λ, α̌i〉 ∈ {1, 2}, and µ−λ ∈ Qλ,µ
is the sum of two simple roots that generate G2

Using our explicit calculations from sections 8 and 9 we can describe the
scheme (L<0G ·Lλ)∩Gµ in the cases a) and b) of the theorem above as follows:

Theorem 10.2
Let (λ, µ) be a minimal degeneration of coweights.

(a) If µ− λ is a simple co-root α̌i, i ∈ IG then

(L<0G · Lλ) ∩ Gµ ∼= Spec k[T1, T2, T3]/(Tλi+2
1 − T2T3)

(b) If Iλ,µ = Jλ,µ and µ− λ = ᾱλ,µ then

(L<0G · Lλ) ∩ Gµ
∼=−→ Cmin(λ, µ)

Proof. Using Lemma 7.6 we can restrict ourselves to the Levi subgroup Mλ,µ

corresponding to the Dynkin diagram Iλ,µ and the dominant co-weights λM
and µM . In the case a) we simply have Iλ,µ = A1, corresponding to the case of
PGL2. In the case b) 〈λ, α̌i〉 = 0 for all i ∈ Iλ,µ, thus the restriction

µIλ,µ :=
∑
i∈Iλ,µ

〈µ, α̌i〉 · ω̌i

of µ to Iλ,µ is ᾱλ,µ. This means we are in the situation of Lemma 8.3.
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10.3
A natural question arising from theorem 10.2 is: Given a reductive group G,
which singularities can arise as minimal degeneration singularities in GG. This
question can be answered in terms of connected subdiagrams I ⊂ IG. Denote
by ᾱI the short dominant co-root of I.

(a) For each fundamental co-weight ω̌ of G and each p ∈ N we can choose
µ = (p+ 2)α̌ to get a Kleinian singularity of the type in a), namely ap+1.
By the proof of Theorem 10.2 we know that these are the only singularities
occurring in case a).

(b) By Theorem 10.2 the singularity in b) is uniquely determined by I and
obviously each connected subdiagram of IG gives rise to a singularity of
this type by setting µ = ᾱI and λ = 0. Thus for each such I we get a
Kleinian singularity of type I.

(c) If IG contains a diagram of type C the case c) of Theorem 10.1 can occur
but the situation here seems to be more involved. Let I be a subdiagram
of IG of type Cp. Let (λ, µ) be a minimal degeneration with I = Iµ,λ.
Using Lemma 7.6 with M corresponding to the Dynkin diagram I (as in
the proof of Theorem 10.2) we know that the singularity for this minimal
degeneration depends only on µM and λM . But the conditions in case
c) require λM to be the unique long co-root α̌i with i ∈ I and µM to be
ᾱI − λM . This means the singularity is uniquely determined by I and
thus by p. It is called acp. We note that this singularity does not arise for
every I ⊂ IG of type Cp, see 10.4.

(d) If IG contains a diagram of type G2 we can argue as in c). Given I ⊂ IG
of type G2 there are two choices for λM : λM = α̌i with α̌i the unique long
co-root with i ∈ I or λM = 2α̌i. This determines µM . Thus I together
with one of the two choices determine the singularity. They are called ag2

and cg2 respectively.

Summarizing the above we see that for each connected subdiagram I there is
a Kleinian singularity of the according type, if I is of type Cp there is another
singularity acp and if I is of type G2 then there are two more singularities arising
from I, ag2 and cg2.

10.4
To illustrate the different cases of theorem 10.1 we observe that case c) is for
example not possible for G = Sp2g even though it is of type C: Assume we are
given µ, λ ∈ ΛSp2g

as in c). It is obvious that the short simple co-root of I is α̌g,
the short simple co-root of ISp2g

(this is the only possibility for a subdiagram
of C to be of type C again). If λ =

∑
i∈IG λiω̌i then 〈λ, α̌g〉 = λg.

But ω̌g = (1/2, . . . , 1/2), so λg is even and therefore 6= 1.
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Now we briefly discuss the dimension of the Kleinian singularities and the
singularities acp.
As a result of Lemma 5.3 c) and Lemma 6.7 a) iii) we know that
dim

(
L<0G · Lλ ∩ Gµ

)
only depends on µ− λ.

Let I ⊂ GI of type Cp. Then given µ and λ as in a or b) with I = Iλ,µ we get
the same µ− λ as with µ and λ as in c).
This means that dim(cn) = dim(acn).
Below we give a list of the dimensions of the singularities corresponding to the
possible choices of I in the classical cases.

• I = Al: 2ρ =
∑l+1
i=1(l − 2(i − 1))ei, ᾱ =

∑
i∈I αi = (1, 0, . . . , 0,−1) ⇒

〈2ρ, ᾱ〉 = 2l

• I = Bl: 2ρ =
∑l
i=1(2(l− i) + 1)ei, ᾱ = (1, 1, 0, . . . , 0)⇒ 〈2ρ, ᾱ〉 = 4(l− 1)

• I = Cl: 2ρ =
∑l
i=1 2(l − i+ 1)ei, ᾱ = (1, 0, . . . , 0) ⇒ 〈2ρ, ᾱ〉 = 2l

• I = Dl: 2ρ =
∑l−1
i=1 2(l − i)ei, ᾱ = (1, 1, 0, . . . , 0) ⇒ 〈2ρ, ᾱ〉 = 4l − 6

• I = G2: 2ρ = 2(−1,−2, 3), ᾱ = 1/3(−2,−2, 4) ⇒ 〈2ρ, ᾱ〉 = 12

Since for every singularity of the type in case c) there is a singularity of
the same dimension of the type in case b) one can ask whether those are the
same. The answer to this question is negative according to [Juteau, 2008], see
the introduction.
Below we give an example for the case ac2. Unfortunately from the calculation
it is not clear that this singularity is not the Kleinian singularity c2.

11 Calculation of the Singularity of type ac2

An example for a minimal degeneration singularity of type ac2 is given by the
co-weights λ = (1/2, 1/2) and µ = (3/2, 1/2) in the root system C2.
There are two minimal co-weights in Λ+

PSp4
, 0 and λ = (1/2, 1/2), giving two

connected components of GPSp4
. The connected component Y0 belonging to the

co-weight 0 is naturally isomorphic to GSp4 , analogous to the situation of PGL
(see 5.6).
The connected component Y1 corresponding to λ is characterized by the condi-
tion that L ∈ Y1 if and only if L is represented by a matrix g ∈ GSp4(k((z)))
such that gt · J · g = z−1J where J is the symplectic form given by the matrix

J =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


(This again is analogous to the situation for PGL. In general the connected com-
ponents Yi are characterized by the condition gt · J · g = z−1J for all g ∈ PSp.
The proof is the same as for PGL.)
Then Lλ is represented by the matrix zλ := diag(1, 1, z−1, z−1) and Lµ is rep-
resented by the matrix zµ := diag(z, 1, z−1, z−2).

47



The inclusion Sp4 ⊂ GSp4 induces a closed immersion GSp4
↪→ GGSp4

. Multipli-
cation with zλ induces an isomorphism of GGSp4

that maps GSp4
isomorphically

to the closed sub-k-space defined by the condition gt · J · g = z−1J , which is
obviously isomorphic to Y1. Using this fact we can calculate inside GGSp4

.
To compute L<0G · Lλ ∩ Gµ we observe that Gµ ⊂ zλ · G (1)

Sp4
⊂ GGSp4

since

L(1,0) ∈ G
(1)
Sp4

and zλ ·L(1,0) = Lµ (where L(1,0) is the lattice belonging to the co-
weight (1, 0) ∈ Λ+

Sp4
, L(1, 0) being represented by the matrix diag(z, 1, 1, z−1)).

The closed subscheme zλ · G (1)
Sp4

contains the lattices L ∈ GGSp4
, such that

z1R[[z]]4 ⊂ L ⊂ z−2R[[z]]4

Analogously to Lemma 3.6 we obtain a closed immersion

λ(z) · G (1)
Sp4

↪→ GrasszGSp4(6, 12)

sending a lattice L to its quotient in z−2R[[z]]4/z ·R[[z]]4. Consider the basis

(e1, . . . , e4, z
−1e1, . . . , z

−1e4, z
−2e1, . . . , z

−2e1)

of z−2R[[z]]4/z ·R[[z]]4, where ei is the standard basis of R[[z]]4.
We write Uλ for the image of Uλ ∩ zλ · G (1)

Sp4
in the Grassmannian analog to the

description in 3.13. Then L ∈ Uλ is of the form

L =


12 0 0
0 12 0
A1 A2 A3

0 0 12

A4 A5 A6

A7 A8 A9


written as a block matrix with all entries being 2 × 2-matrices. Using the
criterion of Lemma 5.13 on L we get:

lim
s→0

s−1L =


12 0 0
0 12 0

s ·A1 s ·A2 s ·A3

0 0 s · 12

s2 ·A4 s2 ·A5 s2 ·A6

s2 ·A7 s2 ·A8 s2 ·A9


Multiplying from the right by

( 12 0 0
0 12 0

0 0 s−1·12

)
yields A3 = 0 . Observe that z acts

on the lattice corresponding to L as multiplication byA1 A2 0
0 0 12

A7 A8 A9


from the right. So z-stability of the lattice yields the equations

A2
1 = A4 (15)

A1A2 = A5 (16)
A2 = A6 (17)

A8 +A2
9 = 0 (18)
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and

A4A1 +A6A7 = 0 (19)
A4A2 +A6A8 = 0 (20)
A5 +A6A9 = 0 (21)

A7A1 +A9A7 = 0 (22)
A7A2 +A9A8 = 0 (23)

Using (15)-(18) we only have to deal with A1, A2, A7 and A9 so L is of the form

L =


12 0 0
0 12 0
A1 A2 0
0 0 12

A2
1 A1A2 A2

A7 −A2
9 A9


We rewrite (19)-(23) using (15) - (18):

A3
1 +A2A7 = 0 (24)

A2
1A2 −A2A

2
9 = 0 (25)

A1A2 +A2A9 = 0 (26)
A7A1 +A9A7 = 0 (27)

A7A2 −A3
9 = 0 (28)

We know that Gµ consists of the orbits of all dominant co-weights ν ≤ µ. But the
Grassmannian considered here also contains the orbit belonging to the co-weight
(1, 1,−2,−2). To exclude this orbit we add the condition that the submatrix
corresponding to the z−2 entries has rank one, i.e.

rank
(
A2

1 A1A2 A2

A7 −A2
9 A9

)
≤ 1 (29)

To see that this condition excludes all orbits in GrasszGSp4(6, 12) but the orbits
Gν with ν ≤ µ we give a full list of the orbits in GrasszGSp4(6, 12) by listing the
corresponding fundamental co-weights. Let ν = (ν1, ν2, ν3, ν4). There are the
following conditions:

• ν1 ≥ ν2 ≥ ν3 ≥ ν4 since ν dominant

• ν1 + ν3 = −1 and ν2 + ν4 = −1 as only those Lν are in the component Y1

we are interested in.

• −2 ≤ ν1, ν2, ν3, ν4 since all lattices in GrasszGSp4(6, 12) are required to be
contained in z−2k[[z]]4 by construction.

This leaves only ν = (0, 0,−1,−1) = λ, ν = (1, 0,−1,−2) = µ and ν =
(1, 1,−2,−2). The last one is the only one with ν � µ and its orbit is ob-
viously excluded by condition (29).
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The final condition that we have to impose on L is to belong to a lattice
actually generated by an element of GSp4. This means

z · Lt0 · J · L0 ∈ Mn(k[[z]]) (30)

where L0 is the matrix associated to the given representation of L:

L0 =
(

12 + z−1A1 + z−2A2
1 z−2A2

z−2A7 z−112 + z−2A9

)
Using the special form of L it follows from an easy calculation that this condition
is equivalent to z · Lt0 · J · L0 = J .

In the following we write 1̄2 for
(

0 1
1 0

)
and Ā for 1̄2 · A where A is a (2× 2)

matrix. Carrying out the multiplication in (30) and sorting by z-exponents we
derive

Āt2 = At21̄2 (31)

Ā7 = At71̄2 (32)

Ā1 = −At91̄2 (33)

At1Ā7 = At7Ā1 (34)

(At1)2Ā7 = At7Ā
2
1 (35)

At2Ā7 = At9Ā
2
1 (36)

Ā1
2 = At9Ā1 (37)

At2Ā9 = At9Ā2 (38)

From now on we write

Ai =
(
ai bi
ci di

)
By (33) A9 is determined by A1. Also Ā2 and Ā7 are symmetric by (31) and
(32). More explicitly:

A9 =
(
−d1 −b1
−c1 −a1

)
A2 =

(
a2 b2
c2 a2

)
A7 =

(
a7 b7
c7 a7

)
(39)

Now we want to simplify (29):(
A2

1 A1A2 A2

A7 −A2
9 A9

)
(40)

=


a2

1 + b1c1 b1(a1 + d1) a1a2 + b1c2 a1b2 + a2b1 a2 b2
c1(a1 + d1) d2

1 + b1c1 a2c1 + d1c2 c1b2 + d1a2 c2 a2

a7 b7 −d2
1 − b1c1 −b1(a1 + d1) −d1 −b1

c7 a7 −c1(a1 + d1) −a2
1 − c1b1 −c1 −a1


(41)

Looking at the (2× 2) minors of
(
A2
A9

)
we get

b1c2 = a2d1 a2b1 = b2d1 (42)
a2c1 = c2a1 c1b2 = a2a1. (43)
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Using this we see that A1A2 = (a1 + d1)A2. Since rankA1 ≤ 1 it follows that
A2

1 = (a1 + d1)A1, thus the third and fourth column in the above matrix are
multiples of the last two columns. This means we can write (29) in the following
way:

rank


a1(a1 + d1) b1(a1 + d1) a2 b2
c1(a1 + d1) d1(a1 + d1) c2 a2

a7 b7 −d1 −b1
c7 a7 −c1 −a1

 ≤ 1 (44)

We claim that all the conditions we have not used yet, i.e. (24)-(28) and (34)-
(38) follow from (44) and (39). Indeed, (24) and (28) are equivalent and (26)
implies (25).
Using the (2×2) minors of (44) the other equations follow by an easy calculation.
Therefore the only condition left is (44).

Since it is not clear from the equation (44) what kind of singularity this is,
we used a computer to verify some properties. We confirmed that the dimension
is 4, as follows from the discussion at the end of section 10. Also we verified
that there is an isolated singularity at the origin. Attempts to validate that the
singularity is normal or Cohen-Macaulay failed.
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